Chemical apparatus and process disinfecting – deodorizing – preser – Chemical reactor – Including heat exchanger for reaction chamber or reactants...
Reexamination Certificate
2001-11-26
2004-07-06
Stoner, Kiley (Department: 1725)
Chemical apparatus and process disinfecting, deodorizing, preser
Chemical reactor
Including heat exchanger for reaction chamber or reactants...
C422S198000, C422S198000, C422S198000, C048S127900
Reexamination Certificate
active
06759016
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to steam reformers. More particularly, the present invention relates to steam reformers for catalytically converting a fuel into a reformate stream comprising hydrogen. The present steam reformer incorporates multiple reformer tubes and a multiple element burner.
BACKGROUND OF THE INVENTION
A catalytic hydrocarbon fuel steam reformer converts a fuel stream, comprising, for example, desulfurized natural gas, light distillates, methanol, propane, naphtha, kerosene, and/or combinations thereof, and water vapor into a hydrogen-rich reformate stream. The hydrogen-rich reformate stream is generally suitable for use as a fuel gas stream directed to the anode of a fuel cell after passing through a water gas shift reactor and other purification means such as a carbon monoxide selective oxidizer or a pressure swing absorption (“PSA”) unit. In the conversion process, the raw hydrocarbon fuel stream is typically flowed through a catalyst bed or beds contained within reactor tubes mounted in a reformer vessel. The catalytic conversion process is normally carried out at elevated catalyst temperatures in the range of about 600° C. to about 800° C. Such elevated temperatures are typically generated by the heat of combustion from a burner incorporated into the reformer.
The search for alternative power sources has focused attention on the use of fuel cells to generate electrical power. Unlike conventional fossil fuel power sources, fuel cells are capable of generating electrical power from a fuel stream and an oxidant stream without producing substantial amounts of undesirable byproducts, such as sulfur oxides, nitrogen oxides or carbon monoxide. However, the commercial viability of fuel cell systems depends in part on the ability to efficiently and cleanly convert conventional hydrocarbon fuel sources, such as natural gas (methane) or methanol, for example, to a hydrogen-rich reformate gas stream. Properly designed catalytic steam reformers can generate the required reformate gas streams with increased reliability and decreased cost.
As to reliability and cost, conventional industrial catalytic steam reformers have at least two major disadvantages with respect to fuel cell use. First, because conventional industrial reformers operate at very high temperatures and pressure differentials, the reformer tubes that contain the catalyst must be constructed of rugged, thick walled portions of expensive materials capable of withstanding high-temperature operating conditions. Additionally, conventional industrial steam reformers also tend to be quite large, which again impacts material costs.
Smaller steam reformers have also been designed for use in fuel cell system applications. Such steam reformers have employed single-tube and multiple-tube designs. The smaller steam reformer designs have at least two major disadvantages in fuel cell system applications.
First, current steam reformer designs tend to lack quick start-up capability, with start-up times typically of from about one to four hours. Lack of quick start-up capability can be problematic in some fuel cell applications, particularly where the reformer is expected to have a relatively short duty cycle.
Some current steam reformer designs utilize a multi-element burner, but these burners do not adequately provide for quick start-up and/or lack the flexibility to efficiently operate on multiple fuels, including for example, natural gas, fuel cell anode exhaust or PSA off-gas. For example, in a fuel cell power plant a steam reformer may be used to convert natural gas into a hydrogen-rich fuel stream, and it is desirable to have a burner capable of operating on natural gas and air (start-up mode), a reformate stream and air (transition or “hot standby” mode), and the fuel cell anode and cathode exhaust streams (normal operation mode).
Second, as part of fuel processing systems in fuel cell-related applications or merchant hydrogen production, for example, current steam reformer designs are less than cost-effective. For example, high-pressure burners and/or reformer vessels increase the parasitic load on the fuel processing system due to associated compressors, thereby decreasing efficiency and increasing cost and complexity. Conversely, in merchant hydrogen production applications, a low-pressure reformer vessel increases the fuel processing system parasitic load because of the associated process gas or syngas compressor that is required. In addition, current steam reformer designs tend to be relatively complex, resulting in increased manufacturing costs and reliability concerns.
It is desirable for a steam reformer to be able to start up relatively quickly, and to be able to operate efficiently without adding undue complexity or cost. At the same time, it is desirable for a steam reformer to be low-cost, scalable, and compatible with a variety of fuel processing systems.
SUMMARY OF THE INVENTION
A compact, multiple tube steam reformer converts a fuel into a reformate stream comprising hydrogen. In one embodiment, the present steam reformer comprises a closed vessel and a burner disposed within the vessel. The burner comprises:
(a) a burner fuel manifold for receiving and distributing a burner fuel stream, the burner fuel manifold comprising a plurality of burner fuel distribution tubes, each of the burner fuel distribution tubes having an inlet end and an outlet end, the burner fuel distribution tubes disposed in a separator member;
(b) an oxidant manifold for receiving and distributing an oxidant stream, the oxidant manifold comprising a plurality of oxidant distribution tubes, each of the oxidant distribution tubes having an inlet end and an outlet end, the oxidant distribution tubes extending through the burner fuel manifold and fluidly isolated therefrom; and
(c) a start fuel manifold for receiving and distributing a start fuel stream, the start fuel manifold comprising a plurality of start fuel distribution tubes, each of the start fuel distribution tubes having an inlet end and an outlet end, the start fuel distribution tubes extending through the oxidant manifold and fluidly isolated therefrom.
The outlet end of each of the oxidant distribution tubes extends into the inlet end of one of the burner fuel distribution tubes, forming a first gap between the outer wall of the oxidant distribution tube and the inner wall of the burner fuel distribution tube, and the outlet end of each of the start fuel distribution tubes extends into the inlet end of a corresponding one of the oxidant distribution tubes, forming a second gap between the outer wall of the start fuel distribution tube and the inner wall of the oxidant distribution tube.
In another embodiment, the reformer comprises a closed vessel and a burner disposed within the vessel. The burner comprises:
(a) a start fuel manifold for receiving and distributing a start fuel stream;
(b) an oxidant manifold for receiving and distributing an oxidant stream, the oxidant manifold comprising a plurality of oxidant distribution tubes, each of the oxidant distribution tubes having an inlet end and an outlet end, the oxidant distribution tubes disposed in a separator member; and
(c) a burner fuel manifold for receiving and distributing a burner fuel stream, the burner fuel manifold comprising a plurality of burner fuel distribution tubes, each of the burner fuel distribution tubes having an inlet end and an outlet end, the burner fuel distribution tubes extending through the start fuel manifold and the oxidant manifold and fluidly isolated therefrom.
The outlet end of each of the burner fuel distribution tubes extends into the inlet end of a corresponding oxidant distribution tube, forming a gap between the outer wall of the burner fuel distribution tube and the inner wall of the oxidant distribution tube, and wherein the start fuel manifold has one or more openings therein associated with at least a portion of the burner fuel distribution tubes.
The burner fuel distribution tubes and oxidant distribution tubes may be arranged in a hexagonal array.
Bora Biraj
Gubner Andreas
Prasad Alakh
Sederquist Richard
Ballard Power Systems Inc.
McAndrews Held & Malloy Ltd.
Stoner Kiley
Tran Len
LandOfFree
Compact multiple tube steam reformer does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Compact multiple tube steam reformer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Compact multiple tube steam reformer will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3203421