Compact internal combustion engine

Internal-combustion engines – Frame construction – Horizontal cylinder

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C123S041440, C123S090480, C123S19800E

Reexamination Certificate

active

06196181

ABSTRACT:

BACKGROUND
1. Field of the Invention
The present invention relates to internal combustion reciprocating engines and in particular to a reduced size internal combustion reciprocating engine of which a plurality can be interconnected to form a larger engine.
2. Description of the Related Art
Internal combustion reciprocating engines have been known for over a century. The internal combustion reciprocating engine has been manufactured in numerous configurations over the years. These engines are utilized in automobiles, air planes and water craft. An important consideration in each of these applications is the size and weight of the engine. There is a trade off between the structural integrity or durability of an engine and the size and weight of the engine. Engine manufacturers design overly massive engine parts to increase the durability and useful life of an engine. Utilization of massive engine parts, however, increases the weight and size of the engine and can actually increase engine wear by increasing the dynamic weight of the moving parts in the engine. Thus there is a need for a reduced weight and size engine that is durable.
Some engine manufacturers have apparently built engines by interconnecting a set of smaller engines or modular engines. Modular engines are known in the prior art as evidenced by the Voorhies patent, U.S. Pat. No. 2,491,630, entitled “An Engine Constructed of Sections Bolted Together Along the Vertical Plane to Form an Entire Head Block and Crankcase Thereof,” issued on Dec. 20, 1949. Voorhies patented an internal combustion engine constructed from a series of engine modules. The Voorhies engine however suffers the same inadequacies as other conventional engine designs.
Some of the problems presented by typical engine designs are discussed below.
Cam Followers
Typical cam follower mechanisms act as an intermediary between a cam shaft lobe and a valve stem. Cam followers compensate for rotating cam lobes side thrust. Lobes assert a composite thrust containing both a horizontal (side thrust) and vertical (downward thrust) component. The cam followers absorbs some of the side thrust. Any portion of this horizontal thrust component which is asserted on the valve stem increases wear on the valve stem and valve stem guide in which the valve stem slides. The horizontal and vertical components are asserted upon the cam follower by the rotating cam lobe. The cam lobe rotates, depresses the cam follower mechanism, which in turn depresses the valve stem. Typically a portion of the side thrust component is not compensated for by the cam follower. This side thrust is asserted on the valve stem which increases wear on the valve stem and the valve stem guide.
Typical engine designs typically provide minimal lubrication between the valve stem and the valve stem guide. Inadequate lubrication exacerbates the effect of wear caused by the side thrust asserted on a valve stem by the typical cam follower mechanism. Typically, engine designers utilize long valve stems to provide a relatively long longitudinal dimension, or high aspect ratio of length to width, in order to achieve stability of a valve stem along its axial length.
Engine designers also consider the aspect ratio of the cup-type cam follower. The longitudinal dimension of a conventional cup-type cam follower assembly must be long enough to stabilize the cam follower along its axial length, therefore seeking to reduce the horizontal thrust exerted on the valve stem. As the cam lobe rotates and depresses the cup, the cup's resistance to the side thrust component is manifest in wear on the cup along a line 90° from the axis of rotation of the cam lobe.
In a typical cup-type cam follower, the top of the cup or cup face must have sufficient diameter to cover the valve spring. This cup configuration, thus requires a cup wide enough to cover a valve spring and long enough to be stable. The requirement for large cup increases the overall size of the assembled engine.
Crankshafts
Typical single piece and modular crankshafts have suffered harmonic breakage problems. These problems occur when the natural frequency of vibration of the modular crankshaft matches the frequency of impulses applied to the crankshaft, resulting in breakage, or can induce intolerable torsional deflections of the crankshaft.
The typical high RPM engine produces power input pulses near the frequency range of the natural resonant frequency of the typical crankshaft. Thus, typical modular crankshafts tend to suffer from breakage as the input frequency matches the natural frequency of vibration. Typical modular and single piece crankshafts may also be distorted and strained from bending moments asserted on the crankshaft by the force of the pistons pushing the crankshaft pins.
Cam Shafts
Typical cam shaft deflection has caused typical engine designers to have problems synchronizing interconnected engine modules together to achieve appropriate timing. The cam shaft twists due to the twisting torque applied to it, adversely affecting the timing and the synchronization between engine modules. Typical engine designers utilize a large cam shaft to reduce twisting of the cam shaft in an attempt to overcome timing problems. Large typical cam shaft designs, however, increases the overall size and weight of the assembled engine.
Engine Assembly
Typical engine assembly utilizes a wide array of nuts, bolts and washers of varying shapes, sizes and lengths to assemble the parts to make a typical engine. The typical engine is assembled by different fasteners each having different torque requirements for each individual part of the engine. Different fasteners and different torque create a nonuniform stress gradient on the typical assembled engine. Nonuniform stress distorts the shape of the engine. Diversity of fasteners creates inventory overhead work for the engine manufacturer. The manufacturer must keep up with a wide variety of different size nuts and bolts. Thus, a wide variety of tools are required. Typical engines are assembled utilizing a different tool and assembly procedure for each part of the engine. Typical engines also utilize gaskets between metal parts which creates an assembled tolerance variation. Gaskets variably compress to a nonuniform thicknesses according to the pressure applied to the gasket. The pressure varies at each fastener and at each fastener location. Thus the tolerance of the assembled engine can vary as the thickness of the sealing gaskets vary.
When assembling modular engines designers have found that typical engines require a different size oil pump and cooling pump for each different modular engine configuration, depending upon the number of modules connected to construct the engine. Oil pump size varies with engine size. Thus, the manufacturer must supply a different size coolant and lubrication pump for each configuration of one, two, three, four, or five typical engine modules connected together to construct an engine.
Typically lubrication and coolant fluid flow serially through interconnected engine modules so that the lubricant and coolant fluid enter the first engine module where the fluid is pre-heated by the first engine module before the fluid enters the second engine module, third module, fourth module, and so on. Thus, the fluid entering the last engine module is substantially warmer than the fluid that entered the first engine module. Thus each typical interconnected engine modules run at a different temperature.
Pistons
Typical piston assemblies utilize a trunk style piston. The trunk piston has a flat circular top and a long cylindrical body or trunk. The trunk of the conventional piston fits closely within the cylinder. The cylinder wall guides the trunk of the piston and provides for stability of the piston along the longitudinal axis of the cylinder. The trunk of the conventional piston must be long enough, relative to the diameter of the piston, to provide adequate stability. The ratio of the piston length over the piston diameter determines how stable the motion of the piston is. The trunk of the pist

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Compact internal combustion engine does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Compact internal combustion engine, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Compact internal combustion engine will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2486953

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.