Compact imaging instrument system

Data processing: database and file management or data structures – Database design – Data structure types

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C707S793000, C707S793000, C707S793000

Reexamination Certificate

active

06393431

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to the field of medical instrumentation, and in particular to a data management system utilizing at least one examination instrument capable of storing different forms of data. The system allows upload and download of captured data between the examination instrument(s) and a computer network to create and maintain records and reports.
BACKGROUND OF THE INVENTION
A number of hand-held diagnostic or examination instruments are known in the medical field for examining a patient, such as those commonly used during routine physician office visits. These instruments include, among others, skin surface microscopes which are used for diagnosing skin disorders, otoscopes permitting examination of the ear canal and tympanic membrane, and ophthalmoscopes for examining the eyes. Each of the above instruments have uniquely inherent features to allow an effective examination of the area of interest. Skin surface microscopes, for example, include a distal optical element having a relatively large diameter (e.g. approximately 15 mm) for direct placement onto a wart, lesion, or other skin disorder. Otoscopes, on the other hand, include a frusto-conical insertion portion having a relatively small diameter (4 mm) optic along with an overlaying safety speculum, which prevents insertion beyond a predetermined distance into the ear canal.
It has since become desirable for a patient to be able to witness a primary care or other examination along with the physician. Therefore, videoized versions of the above diagnostic instruments have been developed, such as those described in U.S. Pat. No. 5,363,839, issued to Lankford, U.S. Pat. No. 5,239,984, issued to Cane, et al, and U.S. Pat. No. 4,947,245, issued to Ogawa, et al. In each of the referenced instruments a miniature video camera, such as a CCD or other electronic sensor, is positioned either within the interior of the instrument or adjacently coupled thereto. The electronic sensor includes a light receiving surface or substrate which receives a focused optical image of a target of interest through a specifically designed viewing system, such as a rod lens, objective or other form of lens, typically positioned in the distal end of the instrument.
A separately disposed light box, or other source of illumination, provides white light through a sheathed cable which is tethered to the proximal end of the instrument. The cable includes an optical fiber bundle for directing the light specifically to the distal tip of the instrument, as well as electrical conductors for powering the electronic sensor. The electronic sensor, in turn, creates an analog or digital electrical signal which is remotely transmitted to a processor containing appropriate circuitry for then converting the transmitted electrical signal into a video monitor-ready (PAL, NTSC) format. The processed video signal is then separately displayed on a remote monitor. The use of videoized systems has become increasingly popular and has since taken on the term “telemedicine”.
Telemedicine systems, like those described above, are quite expensive, with each system requiring a separate diagnostic instrument, along with dedicated cabling, light box, signal processor and video peripheral device(s). In addition, each system also requires a significant space allotment, posing a separate problem in that space is at a premium in physician's offices and other environments where such systems would be typically be used. It is therefore desirable to provide a telemedicine system which is capable of performing and displaying multiple forms of examinations.
It is another perceived desire in the field to make such telemedicine systems portable. In fact, it is highly desirous to allow examinations to take place outside the “normal doctor's office”. Along with this need, is a similarly recognized need to allow portions of the system to be compactly arranged without the need for separate peripherals or connecting devices.
Improved organization of patient records is yet another current need in the medical field. To date, creation and maintenance of patient files has been largely a manually managed activity. Data which can form a part of the overall patient record, however, can take on a number of different forms. For example, it has been known that data can be accumulated in a umber of forms, particularly with the advent of telemedicine involving image capture, portions of which might form part of a patient chart or record.
In addition, physicians, such as family practitioners, surgeons, etc., invariably record notes during a patient visit and examination. In some instances, of course, the physician may write information directly into the patient's file. The usual practice, however, is to record events of an examination using a hand-held recording device. The taped notes are then later transcribed and then added to the patient's file. Throughout the course of a single day, however, it is possible that a physician may see as many as 40 patients. This kind of volume makes the task of compiling and transcribing notes difficult, or at a minimum time consuming, either for the physician or for the physician's staff. Reference is herein briefly made to
FIG. 12 and 13
, broadly depicting a transcription procedure in accordance with the prior art.
More particularly, and prior to a patient encounter, a patient chart is taken from the office files and given to the physician. The physician then examines the patient, adding his or her notes to the file and dictating as needed during the course of examination, typically using a hand-held tape recorder. The physician identifies the patient and adds a time and date stamp at the start of each dictation session. Usually, a single tape will contain dictation relating to a plurality of patient encounters over the course of a typical working day or shift. Often the dictation will be done at the end of the day, when details of the patient visit are sketchy. The doctor must usually rely upon memory, and whatever notes made during the course of examination. As noted, however, a doctor will often see many patients during the day, obscuring the details of a specific visit.
The tape is then sent to a transcriptionist, who listens to the tape, as best understood, and manually types the chart notes. The notes are either into typed into a computer record or onto paper for each patient record on the tape. In any event, a copy of the chart notes are then printed and forwarded to the physician for review. The physician fills in any data which could not be successfully interpreted by the transcriptionist, and otherwise edits the chart notes which are then typed in accordance with the corrections. After again reviewing the chart notes, as necessary, the physician signs off the transcribed record. The record is then added to the patient's file. The creation of patient records or reports incorporating several different types of data, including audio and video data files, is even more difficult.
A number of potential problems can occur from the above procedure. First, if the tape(s) is faulty or lost, the physician will be required to create the chart records from memory and/or consultation of any written notes which may have been taken during the examination. A similar problem occurs if the tape is prematurely and accidently erased. The audio tape is the primary source of information, which both the transcriptionist and the physician must rely upon for both creating the draft chart notes and for reviewing purposes. The end result is a heightened probability that the records will be incomplete or inaccurate.
In a similar vein, the printed notes could also be lost or misplaced, potentially delaying the reviewing process. Delays obviously will increase the probability that incorrect or incomplete records will be generated. If known video diagnostic instruments such as those shown in
FIG. 1
are used, the data obtained from each must also be labeled and separately attached to the file. Based on the amount of time taken, it co

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Compact imaging instrument system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Compact imaging instrument system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Compact imaging instrument system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2915131

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.