Communications system for receiving and transmitting data cells

Multiplex communications – Communication techniques for information carried in plural... – Assembly or disassembly of messages having address headers

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S503000, C370S395430

Reexamination Certificate

active

06229822

ABSTRACT:

FIELD OF THE INVENTION
This invention relates in general to digital communication systems, and more particularly to a novel switching system using asynchronous transfer mode (ATM) transmission and switching of information.
BACKGROUND OF THE INVENTION
The emergence of high-speed asynchronous transfer mode (ATM) communications is a recent result of the diverse demands now being made on enterprise backbone networks. Early enterprise networks were dominated by voice traffic with only a relatively small amount of circuit bandwidth devoted to data and other applications. More recently, a range of new applications has evolved resulting in significant changes to existing backbone networks. High-bandwidth video telephony and video conferencing, for example, are rapidly becoming essential requirements in digital communication systems. Similarly, the bandwidth requirements for LAN (Local Area Network) interconnection across multiple sites is also increasing as established prior art LAN systems such as Ethernet™ and Token Ring are upgraded to meet the demands of faster communication and more sophisticated processing.
For example, Fibre Distributed Data Interface (FDDI) LANs operating at 100 Mbps are presently being deployed while even higher bit rates LAN types are emerging as a result of text-based personal computers being replaced by multi-media work stations and associated servers. Typically, multi-media work stations and their associated servers support document architectures that comprise not only text but also high resolution still images and moving images with sound. Thus, instead of inter-site LAN traffic being dominated by file transfers of textual information as in the prior art, LAN file transfers in newer systems are migrating towards higher volume, high bit-rate mixed-media traffic.
The combined effect of such developments has necessitated the development of a more flexible method for the allocation of transmission bandwidth in order to efficiently utilize inter-site leased circuits associated with enterprise networks.
The developments discussed above are not limited to private networks, but are occurring in public carriers as well.
In order to meet these new demands in private and public digital communication systems, an international standard operating mode has been developed for use with broadband integrated services digital networks (BISDN) based on the asynchronous transfer mode (ATM) of transmission and switching. The aim of the ATM protocol is to provide a more flexible facility for the transmission and switching of mixed-media traffic comprising data, voice, still and moving images and video. Traditionally, constant bit rate traffic such as voice has been transmitted and switched using pre-assigned time slots, whereas data is normally transmitted in the form of variable length frames which are multiplexed together on a statistical basis. According to the ATM protocol, transmission and switching is performed on fixed-sized units referred to as “cells”. Cells from different sources (eg. voice, data, video, etc.), are multiplexed together on a statistical basis for transmission purposes.
Each standard ATM cell is 53 bytes in length, comprising a 48-byte information field (also referred to as the “payload”), and a five-byte header containing routing and other fields.
Like packet and frame switching, ATM operates on a virtual call/connection basis. This means that prior to any user information cells being sent, a virtual connection is first placed through the network. During this phase, a virtual connection identifier (VCI) is assigned to the call at each interexchange link along the route. The assigned identifier, however, has only local significance to a link and changes from one link to the next as the cells relating to a connection pass therethrough. This means, therefore, that the routing information carried in each cell header can be relatively small.
In particular, each incoming link/port has associated therewith a routing table that contains the corresponding output link/port and a new VCI to replace the incoming VCI for the subsequent link/port. The routing of cells in both directions along a predetermined route is therefore extremely fast as it involves only a simple look-up operation. As a result, cells from each link can be switched independently and at very high rates. This allows parallel switch architectures to be used and high-speed circuits (ie. in the gigabit-per-second range), each operating at its maximum capacity.
In practice, the VCI is made up of two sub-fields: a virtual path identifier (VPI) and a virtual channel identifier (VCI). The VPI field relates to statically assigned connections whereas the VCI field relates to dynamically assigned connections. Routing can be performed using one or the other, or a combination of the VPI and VCI subfields. For example, a virtual path may be set up through the network on a semi-permanent basis (by network management) between each pair of network endpoints. The cells relating to multiple (ie. concurrent) calls between these end points are then multiplexed together and then routed along the same assigned path. In this example, therefore, the routing of cells within the network is performed using the VPI field and the VCI field would be used at the end point to relate cells to a particular call.
The ATM reference model defines three protocol layers, as follows: (1) ATM adaptation layer which overlies the (2) ATM layer which overlies the (3) physical layer.
The ATM adaptation layer (AAL) provides a range of alternative service classes for performing an adaptation function between the class of service provided to the user (e.g. for the transport of data frames between two LANs), and the cell-based service provided by the ATM layer.
The ATM layer provides the required multiplexing of cells relating to different connections into a single stream of cells, and the subsequent demultiplexing of the cell streams. The ATM layer also effects the required routing/relaying of cells based on the VPI and/or VCI fields.
The physical layer interfaces with the particular transmission medium which carries the actual cells (eg., fibre optic, coaxial cable, etc.), and may be implemented via a number of different communication technologies depending on the type of transmission being used (eg. plesiochronous or synchronous). For the former, the transmitter establishes a frame structure over the bit/byte stream that exactly matches the ATM cell. The receiver then processes the incoming byte stream on a byte-by-byte basis until a valid 5-byte cell header is formed. The incoming byte stream is then processed on these fixed cell boundaries. In the case of a synchronous link (e.g. OC3/STM1), the frame payload field is not a multiple of the cell size and hence the cell boundaries will change from one frame to the next. With this type of link, therefore, a pointer in the overhead channels is used to identify the start of the first cell boundary in the payload field while cell delineation is performed based on the HEC byte (discussed in greater detail below).
As discussed above, the ATM layer performs all of the functions relating to the routing and multiplexing of cells over virtual connections which may be semi-permanent or set up on demand. For the latter, a signalling protocol is implemented which is similar to that used with ISDN.
There are two different header formats for standard ATM cells commonly referred to as UNI and NNI. Each format incorporates a VPI field as the first byte. However, for the format used over a user-network access link intended for use by user devices that generate and receive cells directly, the four most significant bits of the first header byte are replaced by a generic flow control (GFC) field that has only local significance over the link and is included to allow cells to be allocated different priorities. This field is not present within the network, however, and instead the VPI field is extended across the entire byte.
The second byte of the header comprises a first nibble which is an extension of the VPI

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Communications system for receiving and transmitting data cells does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Communications system for receiving and transmitting data cells, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Communications system for receiving and transmitting data cells will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2477079

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.