Communications network having management system architecture...

Electrical computers and digital processing systems: multicomput – Computer network managing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C709S241000, C709S241000

Reexamination Certificate

active

06233610

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to the management of communications networks.
BACKGROUND OF THE INVENTION
Conventional communications networks, for example particularly broadband communications networks, are a result of continuous evolution of technologies over a number of past decades. A conventional communications network comprises a plurality of network elements, such as switches, cross-connects, repeaters and terminals. Persons designing new communications networks, or modifications to existing communications networks have a large selection of hardware based equipment items available from different manufacturers, different equipment having different performances, and operating different transmission protocols according to different standards. Even the network equipment products available from a single manufacturer can vary considerably in functionality, capability and mode of operation due to the historical development of the products, and due to takeovers, mergers and alliances between different manufacturers within the telecommunications industry. There exists a large inventory of such available “legacy” equipment, both as products currently available from manufacturers, and as existing items of network equipment currently installed and in use in communications networks. On the other hand, there exists a considerable number of standards bodies and alliances of manufacturers, concerned with steering the evolution of new communications technologies and protocols with a view to standardization and interoperability of equipment from different manufacturers. Many of the current standards and evolving technologies will form the legacy equipment and systems of the future, thereby adding to the volume of “legacy” equipment in use.
Modern broadband communications networks are required to carry an increasing volume of communications data traffic, having a mixture of traffic characteristics driven by a variety of applications. Such applications include video on demand, voice communication, and computer to computer data transfer. Operators and users of networks need to be able to manage their network resources to make the most cost effective use of communications networks, and to provide adequate services to their customers. Management of a network is involves management of operations, administration, maintenance, and provisioning of network resources (OAMP). Briefly, these elements involve the following:
Operations involves the day-to-day and often minute-to-minute care and feeding of the communications network in order to ensure that it is fulfilling its designed purpose. Examples of operations include monitoring of the network by watching for faults and invoking corrective commands and/or maintenance actions to repair them, comparing measured network performance against objectives and taking corrective action and/or invoking maintenance. Taking corrective action involves operators issuing controls to correct a fault or performance problem or to resolve a customer complaint.
Administration involves a set of activities involved with designing the network, processing orders, assigning addresses, tracking usage, and billing users of the network.
Maintenance involves circumstances that arise when a network does not work as planned, or it is necessary to diagnose and repair system faults.
Provisioning involves installing equipment, setting parameters, verifying that a service is operational and de-installation of equipment or services.
Conventionally, such network management may be achieved through a network controller apparatus. As illustrated schematically in
FIG. 1
herein, a conventional communications network comprises a plurality of heterogeneous network elements NE, controlled and operated by one or more network controllers NC. The network elements may be of different manufacturers', and having different capabilities and protocols. A network controller NC typically comprises a workstation capable of accessing an operation, administration and management (OAM) channel communicating with each of the network elements. The network controller receives and sends messages over the operation and management channel in the form of control signals in accordance with standard and/or proprietary protocols. Examples of widely used protocols include the simple network management protocol (SNMP) which is defined in EITF Standards. Another standard network management protocol is the known common management information protocol (CMIP) of the Open System Interconnect (OSI) Committee of the International Telecommunications Union (ITU-T). Other network management protocols in use include TL1 and a variety of proprietary management protocols. Currently, the two prevailing protocols used to convey management information in communications systems are SNMP and CMIP. There is general agreement that SNMP and its successor SNMP v2 are more suitable for customer premises equipment and private networks, whilst the common management information protocol, and the associated common management information service elements (CMISE) are more appropriate for carrier interconnection. For some devices, such as early asynchronous transfer mode (ATM) switches, it is simpler and easier to achieve interoperability with SNMP than it is with CMIP.
Although SNMP was developed with the intention of later intercepting the International Standard Organization Standards such as CMIP, there are fundamental differences between the SNMP and CMIP protocols which have traditionally inhibited inter-working of the two protocols. Differences between the SNMP and CMIP protocols are illustrated in table 1 herein.
TABLE 1
CMIP (paradigm - object
oriented)
SNMP (paradigm - relational)
Management Information
Management Information
• Complex object classes with
• Simple object types (simple
attributes, events and actions
variables without attributes,
plus tables of simple variables)
No actions or events (SNMP
traps are not associated with
objects
• Separate hierarchies for
• A single hierarchy which is
registration (naming),
used for both naming and
containment and inheritance
containment. No inheritance
• Identification of instances
• Identification of instances
based on containment plus
based on position in hierarchy
distinguished attributes
plus, for table entries, a simple
index value
Several attempts have been made to align the SNMP and CMIP protocols and models. However, many of these approaches are flawed. Such approaches include:
CMOT (Abbreviation of
CM
IP
o
ver
T
CP/IP)
The internet community have proposed how to use the CMIP protocol to manage transmission and control protocol/internet protocol (TCP/IP). CMOT fails because it requires significant changes to internet equipment. CMOT has survived only as a definition of an alternative transport layer protocol for CMIP.
IIMC (abbreviation of
I
SO/CCITT
I
nternet
M
anagement
C
oexistence)
The Network Management Forum (NMF) has endorsed a scheme for translation between CMIP and SNMP management information bases (MIBS). This approach is undesirable because it merely provides a syntactic translation between SNMP and CMIP MIB formats.
In the Network Management Forum (NMF) approach, there is proposed a “Proxy” mechanism which translates between functionally equivalent service, protocol and management information base differences. SNMP object types are mapped to “equivalent” ISO/CCITT object classes and attributes as illustrated schematically in
FIG. 2
herein. No attempt is made to modify the basic shape of the SNMP management information base, so classes normally seen in GDMO management information bases such as the connection object from ITU-T Recommendation G.803 do not appear. The structure of the management information base and the access mechanisms having protocol specific views of the management information base are cleanly separated in the NMF model. The NMF concept enables a network-wide model to be constructed which is independent of the various “views” upon it. Neither of the above approaches addresses the key issue

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Communications network having management system architecture... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Communications network having management system architecture..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Communications network having management system architecture... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2481605

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.