Telecommunications – Transmitter and receiver at same station – Radiotelephone equipment detail
Reexamination Certificate
1999-11-16
2001-04-10
Maung, Nay A. (Department: 2681)
Telecommunications
Transmitter and receiver at same station
Radiotelephone equipment detail
C455S563000, C455S566000
Reexamination Certificate
active
06216013
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a communication system.
DESCRIPTION OF THE PRIOR ART
Systems such as Personal Digital Assistants, or PDAs are known which provide a variety of applications including a diary, address book and computer applications such as wordprocessing and spreadsheets. PDAs are effectively “shrunken computers”—ie. they aim to provide the functionality of a desktop PC in a handheld device by using miniaturized components. Recent attempts have also been made to incorporate communication features into a conventional PDA, by adding mobile phone and/or fax capabilities.
However, since a conventional PDA contains all systems and applications software/hardware onboard, the scope of the device is severely restricted due to size, processing capability and power supply limitations.
SUMMARY OF THE INVENTION
In accordance with a first aspect of the present invention, we provide a communication system comprising at least one mobile handheld telephone handset adapted to communicate via a wireless telephony medium with a telephone network handling system;
wherein the handset comprises means to receive input from a user and produce signals dependent thereupon, means to adapt speech input to produce a voice transmission signal as part of a telephone conversation with a third party; and means to transmit the voice transmission signal via the wireless telephony medium; and
wherein the telephone network handling system comprises means to receive the voice transmission signal, and means to forward the voice signal to a third party;
characterized in that the handset further comprises first processing means adapted to carry out a first processing step on selected input signals and produce data dependent thereupon which preserves predetermined information necessary to carry out a remote second processing step, means to adapt the data according to a conventional wireless telephony protocol to produce a transmission signal, and means to transmit the transmission signal via the wireless telephony medium to the telephone network handling system; and
in that the system further comprises means to receive and process the transmission signal from the telephone network handling system to regenerate the data, and second processing means positioned remote from the handset and adapted to carry out a second processing step on the data, and to produce an output dependent thereupon.
The system according to the present invention provides a means of delivering potentially unlimited processing power to a mobile handset, since the remote processor (which is generally fixed) is not limited by size or power consumption requirements.
The present invention typically includes a wireless telephone device for use in an associated wireless telephony network environment (with the conventional “telephony” features of means to adapt speech input as part of a conventional telephone conversation with a third party), along with the additional feature of further processing distributed between the handset and a remote processor which may be used in a variety of alternative applications. This enables effective human to computer interaction over a wireless telephony medium by providing means in the handset to carry out a first processing step which, while processing, for example compressing, the input signals enough to enable acceptably error free transmission over the wireless telephony network, also preserves key information which is required to carry out a remote second processing step in a central processor, or remotely running application. Typically, the telephone network handling system comprises a wide area cellular network which utilises the GSM (General Standard Mobile) protocol, (with an associated bandwidth for data transmission of 9.6 KBps). Alternatively, it may comprise the DCS 1800 or DECT (Digital European Cordless Telephony) environments.
The telephone network handling system is typically a circuit switched system providing real-time communication between the handset and the third party (in the case of a telephone conversation), and between the first and second processing means (in the case of data transmission). This may be contrasted with a “packet switched” or “message switched” communication environment which can only be used for data transmission.
Typically the means to process outgoing speech input for transmission and incoming voice signals for audio output comprises a modem, and may also further comprise a codec in the case of digital transmission.
The first and second processing steps may be consecutive steps in a speech recognition system. For instance, the first processing step in the handset may be the first step in a speech recognition process, and the second processing step may comprise the remaining steps in the speech recognition process, providing text/instructions as the output.
Typically the first processing step in the speech recognition process produces an output which retains key features of the input speech to allow the speech recognition process to be completed in a remote central server, while also conforming with the bandwidth limitation of the wireless telephony medium (9.6 KBbs in the case of GSM).
Typically the first step in the speech recognition process comprises an initial feature analysis which converts the input speech signals according to a known algorithm (such as linear predictive coding) into parameter coefficients. The second processing step which is carried out in a remote central processor typically comprises comparing the received parameter coefficients to a library of known sub-word units (such as phonemes, sub-phonemes or tri-phones) followed by further analysis against lexical, syntactic and semantic models to provide output text/instructions.
The output from the central processor may be returned to the handset for display in the form of text, and may also be input as instructions to a further, remotely processed application which accepts text as input.
The approach to voice processing recognizes that significant resources, both in terms of processing power and data storage, are required by state-of-the-art recognition engines. Rather than delivering a compromise solution through miniaturization (as is the case with PDAs), limited in both vocabulary range and performance, the handset supports the initial stages of voice recognition processing, i.e. the initial feature analysis, on the handset, and passes the results, now sufficiently reduced in volume to fit the restricted data channel bandwidth offered by mobile/cordless networks, to a large, powerful, multi-user recognition engine located centrally.
Alternatively, the first and second processing steps may be separate processes in a fax transmission system, or first and second analyzing steps in a handwriting recognition system, similar to the speech recognition system.
In the case of a handwriting recognition system, text may be input to the handset via a touch sensitive screen and transmitted to the central processor using a standard facsimile protocol (or any other protocol which provides an appropriately high quality transfer method such that essential features in the written text are not lost). The central processor then carries out a handwriting recognition procedure on the fax data to interpret the handwriting and return it to the handset as recognized text.
In a further alternative, the first and second processing steps may be used in a “remote desktop” application in which the handset acts as a remote input/output device for a computer. The first processing step typically comprises converting input from the user (for instance cursor control instructions) into object-level graphics code, tailored for a particular operating system (such as MS-Windows™, Macintosh™ or any other object-oriented graphical interface) installed on a remote PC. The code is modulated according to the required wireless protocol and transmitted, via the telephone network handling system, to the remote PC. In this case the remote processor is contained in the PC, which decodes the object-level graphics c
Ellis Christopher William Henderson
Moore Iain Charles
Cable & Wireless PLC
Clifford Chance Rogers & Wells LLP
Maung Nay A.
Schaffer Robert D.
LandOfFree
Communication system with handset for distributed processing does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Communication system with handset for distributed processing, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Communication system with handset for distributed processing will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2522838