Communication system for a line network

Multiplex communications – Communication techniques for information carried in plural... – Adaptive

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C340S870030, C379S399010

Reexamination Certificate

active

06222853

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to the field of electronic controls and, more particularly, the present invention relates to a method for operating a communication system and/or control system via a line network equipped with socket outlets in which at least one transmission line is arranged in at least one socket outlet for supplying standardized supply voltage.
2. Description of the Related Art
A method for operating a control system of this type is set forth in PCT application WO 89/12950, which employs a thyristor control. In this known method, ignition impulses for the thyristor are transmitted via the transmission line. The thyristor is an essential part of a brightness control for lighting a room. The principle of operation employs the phase intersection control of the thyristor, in which driving takes place differently depending on the timing of a respective ignition impulse of the thyristor. An analog phase signal thus finally controls the thyristor, so that the transmission protocol comprises only a transmission of the ignition impulses. The preset phase position of the ignition impulses, causes a desired brightness of the lighting.
With this known control system, lighting installations in a building can be controlled. However, this is only a small partial area of the overall field of building services management. Besides supply voltage lines and lines for simple control tasks, among other things telephone lines, lines for computer networks, lines for transmitting radio data and lines for transmitting television data are also included in building services management. This known lighting control system thus realizes only a small part of the tasks to be realized in the field of building services management.
The expense for the installation of the known control system and the cited line networks is high. In particular, it is customary to install a separate line network in the rooms of the building for each of these networks. As a result, there are significant material costs, costs of operating time, and, in case of failure, repair costs in each of these line networks.
One aim of the present invention is to provide a simple method for operating a communication system and/or control system that reduces operating expense, materials expense, installation expense and maintenance expense in the field of building services management. Other objects and advantages of the present invention will be apparent from the following summary and detailed description of the preferred embodiments.
SUMMARY OF THE INVENTION
In the present invention, transmission takes place according to one of at least two selectable transmission protocols, whereby one of the two transmission protocols is selected according to the type of apparatus which is plugged in.
The present invention is based on the recognition that the socket outlets already present in each building can be used to operate a communication system and/or control system. The supply voltage network standardized in each country, including standardized plug sockets, is particularly well suited for the construction of a communication system and/or control system, because the devices that belong to the communication and/or control system require a standard supply voltage. Moreover, the supply voltage lines are the lines which account for the largest use of material. If the existing supply voltage network is also included in the construction of the communication system and/or supply system, then the complete construction of additional separate networks can be avoided. There are synergy effects, consisting, for example, in that plug sockets and plugs need be modified only slightly, and voltage supply cables to the apparatuses also transmit control signals or communication signals, in addition to the supply voltage on transmission lines contained in supply voltage cables. The installation of additional cable can be avoided by means of the invention.
In the present invention, the transmission is carried out according to one of at least two selectable transmission protocols. These transmission protocols can be, for example, protocols for transmission of digital speech signals during telephoning, protocols for transmitting digital radio data, protocols for transmitting digital image data, simple analog or digital control protocols, simple analog sensor protocols and/or protocols for transmitting digital data between different data processing apparatuses.
For each selectable transmission protocol, it is possible to do without an additional line network. The invention thus has the result that the standard supply voltage network is the only line network in a building. It is combined only with the transmission line for the transmission of the apparatus-specific signals. Within the individual transmission protocols, different transmission speeds can be defined for the respective transmission protocol.
In the present invention, the transmission protocol is selected according to the type of apparatus being used. This means that an allocation ensues between devices that can be operated in the communication system and/or control system and selectable transmission protocols, as well as, if warranted, an allocation of transmission speeds. A determined transmission protocol is allocated to each type of connected apparatus.
In an exemplary embodiment of the invention, the transmission line is an optical cable, such as, for example, a glass fiber cable. The transmission of the apparatus-specific signals on the optical cable has the result that disturbances due to the supply line conducted immediately adjacently are excluded. Moreover, the spacings prescribed according to country-specific standardized regulations between supply voltage lines and galvanic signal lines do not have to be maintained during an optical transmission.
In a further exemplary embodiment of the invention, a device identifier is generated at the device, which uniquely identifies at least the type of device. The device identifier is transmitted via the data line, and the type of device connected is subsequently determined on the basis of the device identifier. This exemplary embodiment is based on the consideration that the socket outlets of the standardized supply voltage network are likewise standardized. It is thus unavoidable that devices of the most widely varying types can be plugged into one and the same socket outlet, using plugs of identical construction.
In order to avoid damage to devices, and to ensure correct operation of the various device types, measures must be taken permitting allocation of a connected device to one of the transmission protocols. In the exemplary embodiment of the invention, this measure consists in the production of a device identifier or by the device or by the plug connected with the device. After the connection of the plug connected with the device into the socket outlet, the device identifier is transmitted via the data line. In a control unit, the type of device connected can be determined on the basis of the device identifier. An allocation of a transmission protocol to a socket outlet, and thus to a connected device, is thus possible without expensive manual programming processes. If the device identifier is also manually produced, the manual expense is thus limited merely to the connection of the device using the plug.
The method according to the exemplary embodiment of the invention also has the result that the control unit is relieved of stress, since the device-specific signals do not have to be addressed for or, respectively, by particular device. After the control unit has determined, on the basis of the device identifier, which type of device is connected with the respective data line, only signals required for this device are transmitted on the data line, i.e. sent to the device and/or received by the device.
If the device identifier is sent several times in succession at the device, the control unit can determine when the plug of the device is removed from the socket outlet, since

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Communication system for a line network does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Communication system for a line network, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Communication system for a line network will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2486984

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.