Communication system architecture, apparatus and management...

Telephonic communications – With usage measurement – Call traffic recording by computer or control processor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C379S112010, C379S112050, C379S112040, C379S126000

Reexamination Certificate

active

06356627

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates, in general, to communication system architectures and is particularly, but not exclusively, applicable to an apparatus and method of signalling and management within an exchange environment. The present invention is more specifically directed towards integrating signalling and management in a sub-net of telephony exchanges interconnected through a broadband network such that the sub-net of exchange nodes appears as a single node from a perspective of other external exchanges and management systems. The underlying inventive principle is designed to support migration from existing narrowband telecommunication infrastructure into a broadband domain.
SUMMARY OF THE PRIOR ART
Telecommunication systems are presently undergoing a transition from first generation narrowband digital networks and future multi-media digital networks having broadband capabilities. This transition is necessarily required to support higher data rate communications, including video and Internet applications, that are presently being both considered and made available. Unfortunately, this transitional phase also presents system operators with several dilemmas, and also prejudices immediate implementation of such broadband systems. For example, until such a time when a free-standing broadband system becomes an accepted and freely available standard for all subscriber terminals (such as cellular telephones and data transmission devices), system operators are reticent to write-off their significant investments in current narrowband infrastructure technology. Indeed, such narrowband infrastructure technology already provides a rich set of services and service creation environments that would have to be re-implemented to be deployed in broadband networks.
Consequently, present-day narrowband systems must be adapted to accommodate both narrowband and broadband users; with this statement particularly relevant to call establishment and interworking procedures between these different forms of network.
For an effective migration between narrowband and broadband systems (for the transitional phase), system operators must particularly consider an interworking scenario when all subscribers connect to a narrowband network, but one or more intermediate broadband networks are used to relay information between these narrowband subscribers.
In more detail, telecommunication networks comprise nodes connected by communication resources (usually termed “links”), with a particular network technology characterised by the means of transmission of user and control information along these links and also by the routing and relaying functions embodied in the nodes. The term routing is used to describe the process of determining the path the information will take through the network, while relaying is the process of transferring information from one link to another, i.e. the information is merely passed, without alteration, from one channel resource to another.
In relation to an exemplary narrowband digital network, user and control information (or “data”) is interleaved, using time division multiplexing (TDM), on a 52 kbit per second (kbps) pulse code modulated (PCM) bearer channel. Such bearer channels can each be framed to support four voice calls of 16 kbps, comprised from 13 kbps of sampled and encoded speech and 3 kbit/s of ancillary information, such as parity check and correction bits (and the like) and synchronisation information. Data is then relayed across a node by some form of synchronous TDM switching fabric, often of the ‘time-space-time’ type. Control information (e.g. call set up and tear down messages) logically follows the same path (although not always the same physical path) through the network as user information, and is terminated in each node for routing purposes. Routing is conventionally performed, in each node, on a ‘hop-by-hop’ basis using long lived routing tables, i.e. the node is sufficiently intelligent to determine an optimum route for the succeeding network connection.
Control information is regulated by a signalling scheme that is distinctive to the type of network employed. Particularly, public signalling systems are used between nodes of a public network and between public networks of different operators. Signalling System No. 7 is the only important example of a public signalling system. Access signalling systems are used between subscribers and edge nodes of public networks, e.g. between a radiotelephone and a base station subsystem (BSS). In fact, the most common digital access signalling schemes are Common Channel Signalling Systems, such as the Integrated Service Digital Network (ISDN) DSSS1 signalling schemes (and its predecessors) and Channel Associated Signalling schemes that are both derived from analog signalling. Private schemes are generally derived from access schemes but provide richer functionality within personal networks, such as within a secure private branch exchange (PBX).
Broadband digital networks are characterised in that user and control information is transmitted in fixed or variable length ‘packets’, with these packets prepended with headers that contain bearer channel identification. In contrast with narrowband systems, user information is relayed across a node via an asynchronous switching fabric that examines each packet in turn (using some kind of fairness algorithm) and directs it to the appropriate output link in response to the input link and bearer channel identification. Routing and control information transmission is, however, similar to that for the narrowband case, and differs only inasmuch as the signalling schemes are technology specific.
As a very brief summary of the general teaching underlying PCT/GB98/0245 (that provides for the interconnection of narrowband and broadband networks), a communication system has a broadband network and a plurality of narrowband exchanges each containing at least one communication device. The narrowband exchanges has differing signalling protocols to those of the broadband network. The narrowband exchanges are interconnected through the broadband network, and the communication system is arranged to establish a communication connection between a calling communication device in a first narrowband exchange and a receiving communication device in a different narrowband exchange. Each of the at least one communication devices has an address. Each of the plurality of narrowband exchanges comprises a call server responsive to a call request message generated by the calling communication device, wherein the call request message contains the address of the calling communication device and a destination address associated with the receiving communication device. The call server is arranged to identify a circuit identity associated with a first communication circuit used to send the call request message to the call server. The narrowband exchanges further include means for selecting a phantom trunk different to the first communication circuit, wherein the phantom trunk has a circuit identity and is arranged to support a narrowband communication between the first narrowband exchange and the different narrowband exchange over the broadband network. Each narrowband exchange further includes: means for sending, in a first message, the destination address and the circuit identity from the first narrowband exchange to the second narrowband exchange; means for sending, in a second message, the circuit identity and the address of the calling communication device to the second narrowband exchange; means for identifying the presence of the circuit identity in both the first message and the second message to establish that the communication connection is between the calling communication device and receiving communication device; and means for establishing the communication connection through the broadband network.
In operation, the call server in a first narrowband exchange, in response to a call from a first subscriber terminal to a second subscriber terminal in the different narrowband exchange,

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Communication system architecture, apparatus and management... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Communication system architecture, apparatus and management..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Communication system architecture, apparatus and management... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2887348

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.