Pulse or digital communications – Pulse transmission via radiated baseband
Reexamination Certificate
1998-03-13
2002-01-22
Chin, Stephen (Department: 2634)
Pulse or digital communications
Pulse transmission via radiated baseband
C375S231000, C375S354000, C455S343200, C455S517000
Reexamination Certificate
active
06341145
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to broadband digital radio communication of at least several Mbps. More particularly, the present invention relates to a method and apparatus for setting a transmission condition in a radio communication system which conducts communication between radio communication terminals based on a measure of the line quality of the channels being used.
In a conventional indoor wireless system, it is normal that a transmitted radio signal is substantially reflected and received through a plurality of different paths depending on the condition of the transmission environment (such as the ceiling, floor, or furniture).
FIG. 12
is an illustration showing a state of radio wave transmission in a room. Radio waves radiated from a terminal
1210
are received by a terminal
1212
through a plurality of paths. A signal passing through a path
1201
is not reflected but it is directly received (this signal is referred to as “direct signal”). A signal passing through a path
1202
is reflected once and then received and a signal passing through a path
1203
is reflected twice and then received. These signals
1202
and
1203
are each referred to as a “multipath signal”. Because received signals passing through different paths are different from each other in phase, interference occurs between carrier waves and a phenomenon called frequency selective fading occurs in which signal power suddenly decreases at a specific frequency, as shown in FIG.
13
.
The influence of this phenomenon remarkably differs between the case of millimeter wave transmission (30 to 300 GHz) and the case of quasi-microwave transmission (e.g., 2.4 GHz). When a carrier wave is a millimeter wave, it greatly attenuates compared to the case of a quasi-microwave even when both waves are transmitted over the same distance. Therefore, in the case of a quasi-microwave, even a multipath signal repeatedly reflected in a space many times keeps a high-enough intensity and causes interference. As a result, distance differences between paths causing interference are widely distributed. In the case of a millimeter wave, however, distance differences between paths causing interference are concentrated on a limited range. As a result, frequency selective fading occurs in the whole frequency band used in the case of a quasi-microwave. In the case of a millimeter wave, however, the phenomenon strongly occurs in part of the frequency band used, as shown in FIG.
13
.
Moreover, in the case of broadband communication, the object of the invention, requiring a symbol transmission rate of several mega-symbols/sec or more, the problem of inter-symbol interference (ISI) occurs. This is because a signal is transmitted at a high speed and thereby, delay of a multipath signal cannot be ignored. As shown in
FIGS. 14A-14D
, the delay time of a multipath signal accounts for a large part of the time corresponding to one symbol in the case of high-speed transmission, and a delay equivalent to most part of the length of one symbol (in the case of the multipath signal
1202
) or more (in the case of the multipath signal
1203
) occurs. Thereby, symbols A′ and A″ of multipath signals corresponding to symbol A of the direct signal
1201
strongly interfere with symbol B which is the next symbol of the direct signal.
Thus, in the case of high-speed transmission, strong ISI occurs between multipath signals and the direct signal. Attenuation of the multipath signals is small because the path lengths are not very large compared to the case of the direct signal. Therefore, it is impossible to decode a reception signal
1400
on which the above multipath signals are superimposed.
A conventional apparatus for solving the ISI problem due to high-speed transmission is disclosed in the proceedings of Symposium on Development of Frequency Resources 96, pp. 25-35. To moderate the ISI problem producing ghost signals, the conventional apparatus divides a high frequency band into a plurality of narrow frequency bands and limits the symbol transmission rate of each narrow frequency band so that the ISI does not become a problem in each narrow frequency band.
The transmission method of constructing a broadband channel from a plurality of narrow frequency bands is generally known as frequency division multiplex (FDM) method.
In an indoor environment, the line quality changes in a short time because the radio wave transmission environment frequently changes compared to the case of an outdoor environment. Therefore, the line quality becomes very unstable and thus, there is a problem that the error rate may suddenly increase or the line may be cut off even if the FDM method is directly applied.
When high-speed transmission (10 Mbps or more) is used, it is expected that a multimedia radio terminal capable of transmitting data or video in addition to voice, by a presently used wireless terminal (much less than 10 Mbps), can be realized. For this reason, it is necessary to transmit signals having various communication characteristics at the same time. For example, the communication characteristics of voice allows for the error rate to be a little high but the variation in transmission delay cannot be large. On the other hand, the communication characteristics of ordinary data allows for a variation in transmission delay but communication errors can be a problem.
In the conventional apparatus, it has been impossible to provide a line quality corresponding to the quality of service required for information to be transmitted and communications to be performed. Therefore, when the conventional apparatus is applied to multimedia communication a problem arises that communication efficiency is reduced because communication is performed at a line quality higher than required.
Further, while the demand for a multimedia terminal using high-speed communication and a wide frequency band exists, a demand that communication of only voice or data or multimedia communication using a lower quality of service also exists. For an indoor radio LAN, it would be convenient if a high-performance multimedia terminal using a wide frequency band can communicate, in the same system, with a portable terminal of low cost, low power consumption and uses a narrow frequency band.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a method and apparatus for setting a transmission condition in a radio communication system which conducts communication between radio terminals based on a measure of the line quality of the channels being used.
The present invention provides a communication method and system of which sets a transmission condition in a broadband radio communication system. The broadband radio communication system conducts communication between first and second radio communication terminals on a plurality of narrowband channels obtained by dividing a broadband channel. The broadband radio-communication system can be a digital system.
The communication method and system of the present invention performs the steps or the functions of setting a transmission condition of at least part of the narrowband channels in the first radio communication terminal, transmitting a wireless communication from the first radio communication terminal to the second radio communication terminal on the at least part of the narrowband channels for which the transmission condition has been set, measuring in the second radio communication terminal a line quality of each narrowband channel of the at least part of the narrowband channels upon receipt of the wireless communication from the first radio communication terminal, and transmitting line quality information indicating the line quality of each narrowband of the at least part of the narrowband channels from the second radio communication terminal to the first radio communication terminal. The setting or function is performed again using a new transmission condition for each narrowband channel of the at least part of the narrowband channels based on the line quality information received
Hioe Willy
Nishino Toshikazu
Antonelli Terry Stout & Kraus LLP
Chin Stephen
Hitachi , Ltd.
Liu Shuwang
LandOfFree
Communication method for broadband digital radio system and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Communication method for broadband digital radio system and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Communication method for broadband digital radio system and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2842169