Communication devices, radio frequency identification...

Communications: electrical – Condition responsive indicating system – Specific condition

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C029S855000, C340S572700, C340S572800

Reexamination Certificate

active

06229441

ABSTRACT:

TECHNICAL FIELD
The present invention relates to electronic devices and methods of forming electronic devices.
BACKGROUND OF THE INVENTION
Electronic identification systems typically comprise two devices which are configured to communicate with one another. Preferred configurations of the electronic identification systems are operable to provide such communications via a wireless medium.
One such configuration is described in U.S. Pat. No. 6,130,602 issued Oct. 10, 2000, assigned to the assignee of the present application and incorporated herein by reference. This application discloses the use of a radio frequency (RF) communication system including communication devices. The disclosed communication devices include an interrogator and a transponder, such as a tag or card.
Such communication systems can be used in various identification functions and other applications. The interrogator is configured to output a polling signal which may comprise a radio frequency signal including a predefined code. The transponders of such a communication system are operable to transmit an identification signal responsive to receiving an appropriate command or polling signal. More specifically, the appropriate transponders are configured to recognize the predefined code. The transponders receiving the code subsequently output a particular identification signal which is associated with the transmitting transponder. Following transmission of the polling signal, the interrogator is configured to receive the identification signals enabling detection of the presence of corresponding transponders.
Such communication systems are useable in identification, applications such as inventory or other object monitoring. For example, a remote identification device is attached to an object of interest. Responsive to receiving the appropriate polling signal, the identification device is equipped to output an identification signal. Generating the identification signal identifies the presence or location of the identification device and the article or object attached thereto.
Given the nature of use of such electronic devices (i.e., attachment of the transponder to other devices or objects), it is preferred to minimize the size of the electronic device. Minimizing the size of the device imparts less impact upon the goods being tracked. In addition, providing an electronic device of reduced size permits the electronic device to be utilized with smaller items to be tracked in inventory. Compact electronic devices also have cosmetic and utilitarian advantages over larger conventional communication devices.
Providing electronic devices of such reduced size requires the use of compact components and closely spaced, high definition interconnections for those components within the electronic device. In addition it is necessary to adequately insulate all interconnections to provide proper operation of the electronic device despite the high definition conductors and reduced size.
Therefore, it is desirable to provide an electronic device which achieves the benefits of compact design while overcoming problems associated therewith.
SUMMARY OF THE INVENTION
According to one aspect, the present invention provides an electronic device including a substrate having a first conductor. A portion of the first conductor defines a first area and a second area. The electronic device includes an electronic component and a second conductor which comprises a conductive adhesive configured to electrically couple the first area with the second area. The substrate is flexible according to some embodiments. Additionally, a dielectric is provided intermediate the first area and the second area in one embodiment. The dielectric is operable to electrically insulate the first conductor.
A second aspect of the present invention provides an apparatus configured to conduct electricity. The conductive apparatus includes a first conductor which defines a first area and a second area of a substrate support surface. A dielectric is provided over a portion of the first conductor intermediate the first area and the second area. A second conductor comprising an adhesive configured to conduct electricity from the first area to the second area is provided upon the dielectric.
Another aspect of the present invention provides a wireless identification device. The wireless identification device includes a flexible substrate configured to support a conductive pattern which includes a plurality of conductors. The device includes an electrical component coupled with the conductive pattern and a dielectric layer over a predetermined portion of the conductive pattern. Further, a conductive adhesive is provided to couple plural conductors of the conductive pattern. Plural electrical components including power sources and integrated circuitry are provided according to some embodiments.
The present invention also provides methods of forming an electronic device. One method includes the steps of providing a substrate having a support surface and forming a first conductor over the support surface. A second conductor is formed over the support surface of the substrate and comprises an adhesive operable to conduct electricity. The first conductor defines a first area and a second area of the support surface of the substrate and the second conductor conducts electricity intermediate the defined first area and the second area.
Another method of the present invention provides forming a remote intelligent communication device. The method includes forming a conductive pattern including a plurality of conductors over a support surface of the substrate and coupling at least one electrical component with the conductive pattern. Further, the method includes forming a dielectric layer over the conductive pattern, providing a conductive adhesive over the dielectric layer and coupling plural conductors of the conductive pattern using the conductive adhesive.
A method of conducting electricity according to the present invention includes the step of forming a first conductor over a support surface of the substrate to define a first area adjacent a first side of the first conductor and a second area adjacent a second side of the first conductor. The method also includes conducting electricity from the first area to the second area using a conductive adhesive and insulating the first conductor from the conductive adhesive using a dielectric layer.


REFERENCES:
patent: 4075632 (1978-02-01), Baldwin et al.
patent: 4926182 (1990-05-01), Ohta et al.
patent: 5528222 (1996-06-01), Moskowitz et al.
patent: 5566441 (1996-10-01), Marsh et al.
patent: 5621412 (1997-04-01), Sharpe et al.
patent: 5649296 (1997-07-01), MacLellan et al.
patent: 5682143 (1997-10-01), Brady et al.
patent: 5786626 (1998-07-01), Brady et al.
patent: 5861662 (1999-01-01), Candelore
patent: 6043745 (2000-03-01), Lake

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Communication devices, radio frequency identification... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Communication devices, radio frequency identification..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Communication devices, radio frequency identification... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2459461

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.