Multiplex communications – Diagnostic testing – Determination of communication parameters
Reexamination Certificate
1997-06-30
2002-09-10
Vu, Huy D. (Department: 2665)
Multiplex communications
Diagnostic testing
Determination of communication parameters
C370S351000, C370S401000, C370S238000
Reexamination Certificate
active
06449259
ABSTRACT:
FILED OF THE INVENTION
The present invention is directed to the interconnection of different communication networks and more particularly to a device and method for routing information signals between the networks.
DESCRIPTION OF THE RELATED ART
A communication network is the interconnection of communicating devices (e.g., telephones, computers, modems, video transceivers) by way of communication channels so that information signals are conveyed between the communicating devices. The communication channels can be different types of media through which the information signals are conveyed. Communication channels can be implemented for example as metallic wires, coaxial cables, fiber optic cables, and open air (for wireless systems). The communicating devices are any device which can transmit and/or receive information signals.
During the past several years, there has been a tremendous increase in the use of communication networks known as data networks. One particular well known and popular data network is commonly referred to as the Internet. A data network is a communication network in which information signals are conveyed throughout the network in digital form. That is, digital bits representing some type of information (e.g., digital data, digitized voice, digitized video, facsimile data) are grouped together along with other bits of data, known as header bits or trailer bits, which represent information about data being transmitted and/or the particular communication protocol being employed by the network. Each group of bits is commonly referred to as a packet. Each packet is typically part of or associated with an information signal. The information signal can be data, voice, or video communication signals.
The protocol represents a particular set of rules by which all or some of the communicating devices within a data network (and other types of communication networks) initiate communication, convey information and terminate communication. Thus, all or some of the communicating devices (e.g., computers, modems, facsimile machines and other digital communication devices) which are part of a data network should transmit and receive information in accordance with a protocol. Typically, protocols are established communication standards that are well defined and followed by data networks. For example, the established protocols for the Internet are the well known IP protocol suite and associated upper level protocols (e.g., TCP/IP, UDP) which are followed by all users of the Internet.
The packets are routed throughout the network via a well known scheme commonly referred to as packet switching. In a packet switching data network, each packet is routed from point to point within the data network. The path taken by one packet representing part of an information signal can be different from the path taken by other packets of that same information signal. In essence, a network routing scheme or algorithm dictates the path to be taken by a packet at each point of the network until that packet arrives at its destination point. Some of the header bits or trailer bits contained within a packet are typically used to encode information about the origin, destination, and the order of the packet in relation to other packets. Also, the routing algorithm used by communicating devices throughout the network allows packets associated with a particular information signal to arrive at their proper destination. Packet switching networks are generally viewed as efficient networks for many types of communications when compared to other communication networks that do not use packet switching. One of the main reasons for this general view is due to the ability of packet switching networks to better able to recover from faults such as system equipment failure and communication link failures.
Prior to the advent of packet switching networks, many communication networks used a different scheme known as circuit switching. In contrast to packet switching, circuit switching allocates network resources to define a specific communication path or channel through which information is to be conveyed between two points within that network. Circuit switching is widely employed in the design of telephony systems such as the well known POTS (Plain Old Telephone System) networks or the PSTN (Public Switched Telephone Network) in which a particular communication path, or channel or circuit is allocated specifically for particular users who wish to communicate with each other. For example, in the case of a PSTN communication network, party A wishes to call party B via a telephone interfaced to the PSTN communication network. Party A dials party B's number. The dialed number, which is part of the signaling used by the PSTN protocol to initiate communication between a calling party and a called party, is recognized by the network and causes the network to establish a communication path between party A and party B. This particular communication path is used by Party A and Party B until the call is terminated by one of the parties. The information signals (a continuous stream of digitized voice samples) are conveyed over the same communication path until one of the parties terminates the telephone conversation. Circuit switched networks, such as the PSTN, are generally viewed as inefficient relative to packet switching networks particularly for sporadic or bursty communications because of the manner in which circuit switching networks allocate their resources.
Circuit switched communication networks are typically associated with telephony networks. Current telephony networks are typically digital versions of earlier telephony systems that used electro-mechanical switching to route analog voice signals between users of such systems. Thus, infrastructures of circuit switched communication systems (mostly telephony systems) throughout the world were firmly established even before the advent of digital communications. With the coming of digital communications, many of these networks now transmit their information signals in digital form but still continue to use circuit switching.
Packet switching networks and circuit switching networks are incompatible in that they use different protocols. Users of packet switched communication networks cannot communicate with users of circuit switched networks. Wholesale conversion of circuit switched communication networks to packet switched communication networks is very unlikely because of the costs involved. There wilt, therefore, be an extended period of time during which both types of networks will coexist. In many circumstances, there may be a need for users of circuit switched networks to communicate with users of packet switched networks. There is also a need for users of incompatible packet switched networks to communicate with each other because not all packet switched networks use the same protocol. More importantly, it is desirable for users of circuit switched communication networks to use the resources of a packet switched network. That is, the circuit switched user would actually transmit and receive information signals via a packet switched network. This is desirable because in many such instances a circuit switched user would actually be using a more efficient and less costly network to communicate with another circuit switched user. A particular type of communication system known as Packet Telephony applies this very philosophy. Packet Telephony is the integration of speech compression and data networking technologies to provide traditional and enhanced telephony services (e.g., voice calls, FAX, voice mail,) over packet switched networks rather than the Public Switched Telephone Network (PSTN). For example, if two users of the PSTN (Person A and Person B) are having a telephone conversation, the analog speech signals from A's microphone are digitized by an A/D converter, typically at 8000 samples/second, 8 bits/sample, totaling 64 Kbits/sec. These digital speech samples are then compressed to reduce the number of bits needed to represent them. The compressio
Allain Brian Jerry
Specht Dennis W.
Szurkowski Edward Stanley
Lucent Technologies - Inc.
Nguyen Steven
Vu Huy D.
LandOfFree
Communication controller does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Communication controller, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Communication controller will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2839361