Common rail injector

Fluid sprinkling – spraying – and diffusing – Fluid pressure responsive discharge modifier* or flow... – Fuel injector or burner

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C239S533200, C239S089000, C239S533900, C239S533110, C239S588000

Reexamination Certificate

active

06705551

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a common rail injector for injecting fuel in a common rail injection system of an internal combustion engine, which system has an injector housing with a fuel inlet that is in communication with a central high-pressure fuel reservoir outside the injector housing and with a pressure chamber inside the injector housing, from which fuel subjected to high pressure is injected as a function of the position of a control valve that assures that a nozzle needle movable back and forth and received in a longitudinal bore of the injector axially counter to the prestressing force of a nozzle spring that is received in a nozzle spring chamber, lifts from a seat when the pressure in the pressure chamber is greater than the pressure in a control chamber that communicates with the fuel inlet via an inlet throttle.
2. Description of the Prior Art
In common rail injection systems, a high-pressure pump pumps the fuel into the central high-pressure fuel reservoir, which is called a common rail. From the high-pressure fuel reservoir, high-pressure lines lead to the individual injectors, which are assigned to the engine cylinders. The injectors are triggered individually by the engine electronics. The rail pressure prevails in the pressure chamber and at the control valve. When the control valve opens, fuel subjected to high pressure reaches the combustion chamber, past the nozzle needle that is lifted counter to the prestressing force of the nozzle spring.
In conventional injectors of the kind known for instance from German Patent Disclosures DE 197 24 637 A1 or DE 197 32 802 A1, relatively long nozzle needles are used. In operation, because of the high pressures and the rapid load changes, very strong forces act on the nozzle needle. These forces cause the nozzle needle to be stretched and compressed in the longitudinal direction. This in turn means that the nozzle needle stroke varies as a function of the forces acting on the nozzle needle.
SUMMARY OF THE INVENTION
The object of the invention is to furnish a common rail injection system with a small structural volume that is simple in design and can be produced economically. In particular, even at a high nozzle needle speed, good closing performance should be assured.
In a common rail injector for injecting fuel in a common rail injection system of an internal combustion engine, which system has an injector housing with a fuel inlet that is in communication with a central high-pressure fuel reservoir outside the injector housing and with a pressure chamber inside the injector housing, from which fuel subjected to high pressure is injected as a function of the position of a control valve that assures that a nozzle needle movable back and forth and received in a longitudinal bore of the injector axially counter to the prestressing force of a nozzle spring that is received in a nozzle spring chamber, lifts from a seat when the pressure in the pressure chamber is greater than the pressure in a control chamber that communicates with the fuel inlet via an inlet throttle, this object is attained in that the control chamber is defined by a bush that is displaceable, causing a sealing action, on the end of the nozzle needle remote from the combustion chamber and that is kept in contact against the injector housing with the aid of the nozzle spring. The bush offers the advantage that the control chamber and the nozzle spring chamber can be combined on the end remote from the combustion chamber of the nozzle needle, without the volume of the control chamber depending on the structural space of the nozzle spring. It is therefore possible to build in a nozzle spring with high spring rigidity, which assures good closure of the nozzle needle. As a result, the injection time and the instant of injection can be defined exactly. Furthermore, the control chamber can be made quite small, which leads to a rapid response behavior of the injector of the invention. There is also a relationship between the maximum attainable nozzle needle speed and the nozzle needle diameter. To achieve elevated nozzle needle speeds, which is important especially upon needle closure, the nozzle needle diameter must be reduced. For a closing speed of 1 m/s, a needle diameter below 3.5 mm is required, for an acceptable control quantity. This is technologically quite complicated and therefore expensive. According to the present invention, the nozzle needle diameter can be selected freely and is not dependent on the dimensions of the nozzle spring. In comparison to convention nozzle needles, the length can be reduced considerably, which contributes to an exact stroke stop.
One particular type of embodiment of the invention is characterized in that a biting edge is embodied on the face of the bush that is in contact with the injector housing. As a result, it is attained that the control chamber embodied in the interior of the bush remains separated from the nozzle spring chamber that surrounds the bush.
A further particular type of embodiment of the invention is characterized in that the inside diameter of the bush is less than or equal to a guide diameter at the nozzle needle. The smaller the control chamber volume can be selected to be, the more readily the injector reacts. According to the present invention, the inside diameter of the bush and the corresponding outside diameter at the nozzle needle can be made much smaller than in conventional injectors.
Another particular type of embodiment of the invention is characterized in that the fuel inlet communicates with the pressure chamber via the nozzle spring chamber, and that the nozzle needle is guided between the nozzle spring chamber and the pressure chamber. This offers the advantage that the nozzle needle guide no longer has any sealing function. This makes the demands in terms of quality of the guide less stringent, leading to economies in production. Since the same pressure prevails on both sides of the guide, guide leakage no longer occurs.
A further particular type of embodiment of the invention is characterized in that the nozzle spring chamber communicates with the pressure chamber via a bore. As a result, the entire circumference of the nozzle needle can be utilized for guide purposes.
A further particular type of embodiment of the invention is characterized in that at least one flat face, past which fuel from the nozzle spring chamber can reach the pressure chamber, is embodied on the nozzle needle between the nozzle spring chamber and the pressure chamber. This type of embodiment offers advantages especially with regard to the high-pressure strength.
Further particular types of embodiment of the invention are characterized in that the inlet throttle is integrated with the bush, the nozzle needle or the injector housing. The inlet throttle serves to prevent pressure surges in operation.
A further particular type of embodiment of the invention is characterized in that the bush has a collar on its end remote from the combustion chamber. The collar forms a first abutment for the nozzle spring.
A further particular type of embodiment of the invention is characterized in that a step that forms a stop for a spring plate is formed on the nozzle needle. The spring plate forms a second abutment for the nozzle spring.
A further particular type of embodiment of the invention is characterized in that a circumferential groove is recessed out of the nozzle needle, and in this groove a retaining ring which forms a stop for a spring plate is braced. In this type of embodiment, the outside diameter of the nozzle needle in the control chamber and the guide diameter of the nozzle needle between the nozzle spring chamber and the pressure chamber can be the same size. This is advantageous in production, for instance by means of lapping.
A further particular type of embodiment of the invention is characterized in that the retaining ring is in two parts, and in the assembled state it is fixed by the spring plate. As a result, loosening of the spring plate in operation is

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Common rail injector does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Common rail injector, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Common rail injector will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3290759

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.