Multiplex communications – Pathfinding or routing – Switching a message which includes an address header
Reexamination Certificate
1999-02-06
2002-04-02
Ton, Dang (Department: 2661)
Multiplex communications
Pathfinding or routing
Switching a message which includes an address header
C370S258000
Reexamination Certificate
active
06366584
ABSTRACT:
TECHNICAL FIELD
This invention relates to a wireless metropolitan area information communication system, and more particularly to an information communication network utilizing a plurality of high bandwidth wireless links.
BACKGROUND
Network communications, such as telephony networks and information system networks including those used in the Internet, are typically implemented using land-based communications technologies, which generally use either copper wire or optical fiber. Optical fiber is becoming increasingly popular because of its much higher bandwidth. Due to the physical constraints of fiber optic technology, optical transmissions are typically point-to-point. In this method, each network node (which can be a computer system with communications links to one or more other nodes) transmits to only one node at a time. In some networks, such as Ethernet networks, when the receiving node receives data it examines the destination address in the received data and determines if it is the addressee. If it is, the receiving node keeps and processes that data. If it is not, it retransmits the data to another node which does the same. In other network, this routing may be accomplished by other techniques. For example, time division techniques, such as used in SONET, may be relied upon where information in a particular time slot of a frame is directed to one piece of termination equipment and may be identified and processed accordingly. However, information in a different time slot may be retransmitted to another node. In this manner, the data will eventually reach its destination and be processed. If the network has a linear or ring configuration, each node has only one choice of which node to forward the message to. But if each node has connections to multiple other nodes, each node may contain a routing directory or other aid to help it choose which node to which to forward the message. By judiciously choosing which link to use, each node can help to efficiently route the message to its destination through a complex network with a large number of possible routes.
It is also possible for two systems, telephony, computer, or otherwise, to communicate with each other through radio links, such as through point-to-point radio links using directional microwave antennas. Due to the previous cost of microwave radio technology and licensing constraints, this approach has largely been limited to high capacity dedicated communications between two points rather than common network communications in which traffic is routed through a system of many nodes. With the total cost of the technology dropping, it is becoming economically feasible to implement network links with radio. However, most of the installed systems in these networks use either copper wire or fiberoptic interfaces and, therefore, utilize communications protocols adapted for such media and are not directly compatible with current microwave networks. Moreover, the current point to point systems are not adapted to provide functionality necessary in networking installations, such as the aforementioned routing of information, and therefore do not lend themselves easily to installation as a network element.
SUMMARY OF THE INVENTION
In recent years, the FCC has striven to increase competition for local telephone access. At the same time, telecommunications customers' service requirements have dramatically expanded especially in the area of data networking. New government deregulation has allowed for competitive service providers to enter the marketplace. The present invention is well suited to assist a CLEC (Competitive Local Exchange Carrier), for example, to achieve their service delivery network goals. Beside the increasing need for telephony services, customers have placed increasing demands on data communication infrastructures such as Internet Service Providers (ISP), for reliable data communication, such as wide area networking (WAN), local area networking (LAN), and Internet services. The present invention is also well suited for providing high bandwidth data communication and therefore may be utilized to assist an ISP to achieve their delivery goal.
Both CLECs and ISPs may use the present invention, the preferred embodiment of which is a wireless networks based on 38 GHz microwave technology, for, inter alia, the following reasons: 1) high bandwidth, 2) rapid deployment, and 3) incremental deployment costs.
1) The 38 GHz band as partitioned by the FCC includes 14 channels of 100 MHZ each. Such channels are capable of supporting potentially hundreds of Megabits per second, in contrast to cellular channels which may support a few tens of kilobits per second or T
1
lines which support 1.544 Mbps. Thus the use of the 38 GHz frequency bands should provide the much greater subscriber and traffic capacities required by telephony networks or data networks. Of course, spectrum divisions other than those of the 38 GHZ band may be utilized according to the present invention where they may provide sufficient bandwidth to achieve the goals of the present invention.
2) Wireless networks adapted according to the present invention can be deployed in a fraction of the time it takes to deploy in-ground based (copper, fiber, hybrid fiber/coaxial HFC, etc.) systems due to the inherently time consuming processes (permitting, right-of-way resolution, digging etc.) associated with placing cable media in the ground.
3) In addition to rapid to deployment, microwave based service networks of the preferred embodiment of the present invention do not require a massive initial capital investment before any subscribers can get service, which is the case for networks using wire based technologies. The microwave network systems of the preferred embodiment can be built out incrementally, thereby conserving capital while immediately generating revenue.
The preferred embodiment of the present invention further takes advantage of the flexibility afforded by the 38 GHz frequency band licenses granted by the FCC on an area basis, as opposed to other microwave licenses such as in the 23 GHz band, which are allocated as an individual license per point-to-point link. Accordingly, a network coverage plan may be established to provide information communication throughout a metropolitan area utilizing radio links of the present invention, such as shown and described in the above referenced patent application entitled “System and Method for Establishing a Point to Point Radio System”, the disclosure of which is incorporated herein by reference. Thus the 38 GHz frequency band, or similarly regulated frequency bands of radio spectrum, license holders may deploy microwave links at will in their designated service areas nationwide.
Another object of the invention is to provide services at lower entry and deployment costs without the traditional hard-wired network costs associated with cables and trenching.
Another object of the invention is to provide systems that may be deployed rapidly with minimal disruption to the community and the environment.
Another object of the invention is to provide a scaleable architecture incorporating open industry standards which ensures that services and coverage areas can be easily modified and expanded as customer demand warrants.
Another object of the invention is to achieve lower network maintenance, management, and operating costs. Lower ongoing costs are possible given the flexible design options, advanced services, and reduced equipment requirements.
An object of the invention is to provide high speed Internet or other data communication network access. Current Internet access speeds using dial up modem technology or even basic rate ISDN (Integrated Services Digital Network) are inadequate for most commercial users. Alternatives such as DSL (Digital Subscriber Line or Loop) have yet to be deployed in any significant density, while dedicated facilities (leased T
1
) or Frame Relay service from the (Incumbent Local Exchange Carrier) ILEC (if available) are still prohibitively expensive. The demand is expected to continue to in
Andrew Brian J.
Gulliford Philip C.
Fulbright & Jaworski L.L.P.
Sam Phirin
Ton Dang
Triton Network Systems, Inc.
LandOfFree
Commercial network based on point to point radios does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Commercial network based on point to point radios, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Commercial network based on point to point radios will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2910944