Internal-combustion engines – Liquid piston
Reexamination Certificate
1999-03-19
2001-02-06
Dolinar, Andrew M. (Department: 3747)
Internal-combustion engines
Liquid piston
C417S379000, C290S054000
Reexamination Certificate
active
06182615
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to the production of hydroelectric power, and more particularly to a combustion-driven hydroelectric generating system wherein a combustible fuel mixture is introduced and ignited in one or more combustion cylinders containing a liquid and the force of the combustion acts on the surface of the liquid to transfer a slug of the liquid to a gas pressurized vessel and the pressurized liquid from the vessel is used to operate a hydroelectric generator and perform other useful work.
2. Brief Description of the Prior Art
Electrical generation companies normally operate on a power grid system, wherein numerous individual power plants of the fossil fuel type, nuclear type, or the like are joined together over common transmitting lines. The electricity is usually generated using rotating generating equipment. Most electrical power generating facilities in the United States, at the present time, utilize a gas turbine generator as a prime power source for generating electricity that operates on a combustible fuel, usually natural gas, but some employ gas obtained by coal gassification or liquid fuel in vapor form.
Another frequently employed means for generating electricity is a hydraulic turbine generator utilizing the energy of the head of an elevated supply of water. Commonly, the electrical generation and distribution industry also utilizes pump-back facilities which store energy in the form of water head, utilizing energy during the periods when it is most readily and economically available and when surplus generating capacity exists, and recovering the energy to meet peak load demands. Typically, these pumpback facilities use electrical power to drive a generator which, when energized, functions as an electric motor, to power the turbines which, when driven, function as a pump, to move water from a lower elevation through a penstock to an upper elevation, usually an elevated lake. When the flow of water is reversed, the turbine drives the generator to recover the energy. A substantial amount of energy is required to move the water to the upper location and thus the recovered energy is always less than the amount of energy required to move the water to the upper elevation.
The present invention produces and stores energy in the form of pressurized water that is used as a head of water to operate a hydroelectric power generating apparatus without having to move the water to an upper location and is not dependent upon being located near a lake or reservoir.
The present invention is distinguished over the prior art by a combustion-driven hydroelectric generating system that utilizes one or more combustion cylinders that contain a liquid (such as water) and receive a combustible fuel/oxidizer mixture that is ignited and the explosive force of the combustion acts on the surface of the liquid to transfer a metered slug of the liquid to a pressurized vessel containing a pressurized gas (preferably an inert gas). The pressurized liquid from the pressurized vessel serves as a “head of water” that can be used to operate a water wheel (Pelton wheel) or hydroelectric generator and perform other useful work. The transferred liquid is replaced in the combustion cylinder, another charge of the fuel/oxidizer is introduced and ignited and the process is repeated.
SUMMARY OF THE INVENTION
It is therefore an object of the present invention to provide a combustion-driven hydroelectric generating system that utilizes readily available fuel and liquid products to produce hydroelectric power inexpensively.
It is another object of this invention to provide a combustion-driven hydroelectric generating system for use as an emergency power supply to provide hydroelectric power during power outages and when existing power sources are unavailable.
Another object of this invention is to provide a combustion-driven hydroelectric generating system having fuel and pressure requirements that can be served from existing plant or domestic drops from natural gas pipelines.
Another object of this invention is to provide a combustion-driven hydroelectric generating system that produces and stores energy in the form of pressurized water that is used as a head of water to operate a hydroelectric power generating apparatus without having to move the water to an upper location and is not dependent upon being located near a lake or reservoir.
Another object of this invention is to provide a combustion-driven hydroelectric generating system that is suitable for individual domestic residential use and for large-scale commercial use to provide hydroelectric power.
Another object of this invention is to provide a combustion-driven hydroelectric generating system that is non-polluting when operating on natural gas.
Another object of this invention is to provide a combustion-driven hydroelectric generating system that does not require a muffler and has low-noise emission.
A further object of this invention is to provide a combustion-driven hydroelectric generating system that has a minimum of moving parts and is reliable in operation.
A still further object of this invention is to provide a combustion-driven hydroelectric generating system that is inexpensive to manufacture, operate, and maintain.
Other objects of the invention will become apparent from time to time throughout the specification and claims as hereinafter related.
The above noted objects and other objects of the invention are accomplished by a combustion-driven hydroelectric generating system that has one or more combustion cylinders that contain a liquid (such as water) and receive a combustible fuel/oxidizer mixture that is ignited and the explosive force of the combustion acts on the surface of the liquid to transfer a metered slug of the liquid to a pressurized vessel containing a pressurized gas (preferably an inert gas). The pressurized liquid from the pressurized vessel serves as a “head of water” that can be used to operate a water wheel (Pelton wheel) or hydroelectric generator and perform other useful work. The transferred liquid is replaced in the combustion cylinder, another charge of the fuel/oxidizer is introduced and ignited and the process is repeated.
REFERENCES:
patent: 3611723 (1971-10-01), Theis, Jr.
patent: 3815555 (1974-06-01), Tubeuf
patent: 3995428 (1976-12-01), Roberts
patent: 3998049 (1976-12-01), McKinley et al.
patent: 4201049 (1980-05-01), Tobber
patent: 5127369 (1992-07-01), Goldshtik
patent: 5192355 (1993-03-01), Eastin
patent: 5461858 (1995-10-01), Johnson
patent: 5488828 (1996-02-01), Brossard
patent: 5551237 (1996-09-01), Johnson
patent: 5713202 (1998-02-01), Johnson
Dolinar Andrew M.
Huynh Hia
Roddy Kenneth A.
LandOfFree
Combustion-driven hydroelectric generating system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Combustion-driven hydroelectric generating system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Combustion-driven hydroelectric generating system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2604765