Combined stationkeeping and momentum management

Aeronautics and astronautics – Spacecraft – Attitude control

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C244S165000

Reexamination Certificate

active

06296207

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to spacecraft attitude control and momentum management, and specifically to a system and method of simultaneously performing north-south stationkeeping maneuvers and 3-axis momentum management.
BACKGROUND OF THE INVENTION
It is important, in a geosynchronous communication spacecraft, to control the spacecraft's attitude in order to orient communication hardware relative to a planetary location. It is also important for momentum stored in a momentum wheel stabilization system of the spacecraft to be periodically unloaded or desaturated. Mechanisms to accomplish attitude correction and momentum desaturation ensure the geosynchronous spacecraft is kept on-station.
Several mechanisms are used by orbiting spacecraft for stationkeeping, attitude control and momentum desaturation. Typically, bi-propellant chemical thrusters are used to take a spacecraft from a transfer orbit to a synchronous orbit. The bi-propellant thrusters could also be used for stationkeeping, but such thrusters produce relatively powerful disturbance torques due to thruster misalignment, center of mass offsets, and plume impingements. As a result, the bi-propellant thrusters are not preferred for the fine adjustments which are typically made during stationkeeping maneuvers, attitude control, and momentum desaturation.
Alternatively, a spacecraft may use magnetic torquers for attitude control and momentum desaturation. In operation, magnetic torquers alter a spacecraft's attitude by applying the force of an electric coil's dipole moment with respect to the earth's magnetic field. However, magnetic torquers are not preferred for stationkeeping for they produce torque without lateral force. There are other disadvantages associated with the use of magnetic torquers in orbiting spacecraft. By example, magnetic torquers are heavy, provide little control power, and cannot be used to control the pitch attitude of the spacecraft due to the alignment of the dipole moment section with the magnetic field of the earth.
Conventional orbiting spacecraft may employ additional techniques for stationkeeping, attitude control, and momentum desaturation. The additional techniques include, for example, the use of ion propulsion thrusters. In fact, ion propulsion thrusters are particularly desirable for north-south stationkeeping on spacecraft with long mission lifetimes. However, a disadvantage of ion propulsion thrusters is their weight. Also, as with bi-propellant thrusters, the ion propulsion thrusters may produce disturbance torques on the spacecraft resulting in undesirable attitude motion.
It can be appreciated that in addition to the undesirable attitude motion caused by the conventional stationkeeping, attitude control and momentum desaturation techniques discussed above, undesirable attitude motion may also be caused by solar pressure imparted upon the orbiting spacecraft.
Momentum wheel stabilization systems are commonly used to counteract sources of disturbance torque. Typically, such stabilization systems include one or more momentum wheels and control loops to sense changes in the spacecraft's attitude. Sensors on the spacecraft may detect deviations on any of three orthogonal spacecraft axes; the x-axis (roll), the y-axis (pitch), or the z-axis (yaw). The control loops determine the required speed of the wheels to absorb pitch and yaw momentum based on the sensed attitude. Commonly, yaw and pitch momentum are absorbed directly by the momentum wheels, while roll momentum is absorbed as a change in yaw body angle which results from cross-coupling dynamics of momentum biased spacecraft. However, the roll momentum can be stored in the wheels if the wheel system design permits.
As was stated above, momentum stored in the momentum wheels must be periodically relieved, or desaturated. Desaturation is required in order to keep the momentum wheels within a predetermined speed range. Desaturation is typically accomplished by applying an external torque to the spacecraft through chemical propulsion thrusting or magnetic torquing. The external torque is applied to counteract, and thus reduce the stored momentum. However, chemical propulsion thrusting is not preferred for maintaining highly accurate spacecraft attitude during stationkeeping maneuvers because of the inherit disturbance torques introduced. Magnetic torques cannot be produced parallel to the magnetic field vector.
U.S. Pat. No. 5,349,532 Tilley et al. disclose a system and method to maintain a desired spacecraft attitude and unload accumulated momentum while performing north-south stationkeeping maneuvers. Tilley et al. disclose a device for sensing the spacecraft's position, attitude, and stored wheel momentum, and a device for determining the torques required to produce the desired attitude for the spacecraft and desaturate the momentum wheels. Tilley et al. teach in one embodiment the use of ion propulsion thrusters which are gimballed and throttled to produce the desired torques. Ideally, a spacecraft's stationkeeping and momentum management system would operate so as to maximize fuel efficiency during the mission lifetime, without sacrificing reliability. The inventors have determined that this goal would be realized with a system for simultaneously maintaining the spacecraft's stationkeeping maneuvers and momentum management, which employs a thruster firing cycle wherein thrusters are independently fired at predetermined locations along the spacecraft's orbit.
OBJECTS AND ADVANTAGES OF THE INVENTION
It is a first object and advantage of this invention to provide a system and method that simultaneously performs a spacecraft's north-south stationkeeping maneuvers and 3-axis momentum management.
It is another object and advantage of this invention to provide a system and method that simultaneously performs a spacecraft's north-south stationkeeping maneuvers and 3-axis momentum management, without the use of magnetic torquers, where one of a pair of thrusters is fired at predetermined locations along the spacecraft's orbital path.
It is another object and advantage of this invention to provide a system and method that simultaneously performs a spacecraft's north-south stationkeeping maneuvers and 3-axis momentum management by independently firing one of a pair of thrusters, thus reducing the spacecraft's power consumption.
Further objects and advantages of this invention will become more apparent from a consideration of the drawings and ensuing description.
SUMMARY OF THE INVENTION
The foregoing and other problems are overcome and the objects and advantages are realized by methods and methods and apparatus in accordance with embodiments of this invention, wherein simultaneous north-south stationkeeping and 3-axis momentum management is provided for a spacecraft, such as a geosynchronous orbiting spacecraft.
In the present invention, a method of simultaneous north-south stationkeeping and 3-axis momentum management for a geosynchronous orbiting spacecraft having a first thruster, a second thruster, and at least three momentum wheels mounted on-board the spacecraft is disclosed. In a first-pass of a thruster firing cycle, the method includes steps of: firing the first thruster at a first point along an orbital path of the spacecraft; and firing the second thruster at a second point along the orbital path of the spacecraft, where a thrust vector at the second point is non-parallel with a thrust vector at the first point. In a second-pass of the thruster firing cycle, the method fires the first thruster at a third point along the orbital path of the spacecraft, where a thrust vector at the third point is parallel with and on an opposite side of the orbital path from the thrust vector at the second point. The second-pass further includes firing the second thruster at a fourth point along the orbital path of the spacecraft, where a thrust vector at the fourth point is parallel with and on an opposite side of the orbital path from the thrust

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Combined stationkeeping and momentum management does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Combined stationkeeping and momentum management, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Combined stationkeeping and momentum management will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2612198

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.