Combined respiratory flow sensor

Measuring and testing – Volume or rate of flow – Thermal type

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06571622

ABSTRACT:

FIELD OF THE INVENTION
The present invention pertains to a respiratory flow sensor for the measurement of the gas volume flow and the concentration of gas components in the respiratory flow and more particularly to a flow sensor with a generally tubular housing with two opposite windows of a material transparent to infrared radiation, arranged at right angles to the direction of flow, and an infrared sensor with an infrared radiation source and with at least one infrared radiation detector with the infrared radiation source irradiating one of the two windows of the housing and with the infrared radiation detector receiving the infrared radiation of the infrared radiation source after the radiation has passed through the respiratory flow and the two windows and at least one measuring transducer for the gas volume flow, which is arranged in the tubular housing outside the beam path of the infrared radiation.
BACKGROUND OF THE INVENTION
Both measuring means for determining the gas volume flow and for determining the concentration of gas components of the respiratory flow of patients have been known as separate measuring units in clinical practice. Infrared measurement methods, in which radiation is sent through the gas volume flow, e.g., the method described in DE 197 16 061 C1, are preferably used for the measurement of the concentration of gas components in the respiratory flow, wherein the concentration-dependent absorption of the infrared radiation emitted by an infrared radiation source is determined by means of suitable infrared radiation detectors after the radiation has passed through a measured gas cuvette, for a wavelength characteristic of a certain gas such as CO
2
. The concentration of the given gas can be determined by calculation from the measured signal received.
A sensor for the measurement of the gas volume flow and a separate sensor for the measurement of the concentration of gas components, each in a separate housing, have hitherto been connected in series for special tests (FRC, Functional Residual Capacity of the lungs). This practice is complicated in terms of handling, the overall arrangement is relatively bulky and, in particular, such a conventional arrangement for the measurement of the concentration of gas components of the respiratory flow of patients is subject to errors, which can be attributed to the relatively large volume of the dead space of the series-connected overall arrangement. The size of the volume of the dead space has a considerable effect on the CO
2
values of the patient especially in the case of the respiration of premature and newborn patients. Thus, an increase in the volume of the dead space from 1 to 2.5 mL leads to an increase in the CO
2
measured in the blood by about 30%, i.e., the mechanical respiration must be adjusted by correspondingly increasing the respiration volume supplied or the respiration pressure. These measures may in turn lead to a considerable stress for the patient, especially to an overexpansion of the lungs with irreparable damage to the lungs. On the other hand, it is desirable to measure and monitor important characteristics, especially the CO
2
content in the air breathed out as well as the instantaneous and maximum gas volume flow and the respiratory volume determined by integration over one breath, with the shortest possible time delay during the mechanical respiration of the patients. The gas volume flow can be determined with sensors that are known per se, e.g., with hot wire anemometers or with mechanical measuring transducers.
SUMMARY AND OBJECTS OF THE INVENTION
The object of the present invention is consequently to provide a combined and compact respiratory flow sensor, which is suitable for the simultaneous measurement of both the gas volume flow and the concentration of gas components of the respiratory flow.
According to the invention a respiratory flow sensor is provided for the measurement of the gas volume flow and the concentration of gas components of the respiratory flow. The respiratory flow sensor has a tubular housing with two opposite windows arranged at right angles to the direction of flow and consist of a material transparent to infrared radiation. An infrared sensor with an infrared radiation source and with least one the infrared radiation detector is connected to the housing. The infrared radiation source irradiates one of the two windows of the housing. The infrared radiation detector receives the infrared radiation of the infrared radiation source after the radiation has passed through the respiratory flow and the two the windows limiting the respiratory flow. At least one measuring transducer for the gas volume flow is arranged in the tubular housing outside of the beam path of the infrared radiation. The measuring transducer for the gas volume flow comprises two hot wires. The first hot wire is arranged in front of the beam path of the infrared radiation relative to the respiratory flow flowing past. The second hot wire is arranged behind the beam path of the infrared radiation relative to the respiratory flow flowing past. Both of the hot wires are directed substantially in parallel to the beam path of the infrared radiation.
An essential advantage of the respiratory flow sensor according to the invention is that the dead space volume formed by the sensor is markedly reduced due to the compact design, so that improved monitoring even of premature or newborn patients is possible during the mechanical respiration with respect to the composition and the flow parameters of the inspired and expired respiratory flow
Another advantage of a special embodiment of the present invention with two hot wires as measuring transducers for the gas volume flow with an additional air resistance body in the vicinity of one hot wire is that the direction of the inspired or expired respiratory flow can thus be determined in addition to the amount of the gas volume flow. The distance between the two measurement points is preferably selected to be such that the infrared radiation passing through the respiratory flow passes undisturbed through the housing of the respiratory flow sensor, so that the high infrared radiation heat of the hot wires does not affect the infrared radiation radiated in for the concentration measurement from the outside of the housing. Further, the two measurements, namely, that of the gas volume flow and that of the concentration of gas components of the respiratory flow do not mutually affect one another because the infrared radiation of the hot wires does not reach the at least one infrared radiation detector, which is likewise arranged outside the housing.
It is particularly advantageous for this purpose for the hot wires to be directed in parallel to the infrared radiation passing through the housing.
Respiratory flow sensors according to the present invention are suitable for the FRC measurement, measuring a tracer gas instead of the CO
2
.
The measuring transducer for the gas volume flow may be arranged on a measuring attachment that can be inserted into the housing of the respiratory flow sensor and which can be inserted into the housing essentially at right angles to the direction of flow of the respiratory flow and at right angles to the beam path of the infrared radiation.
At least one of the wires, e.g., the second hot wire may be arranged in the vicinity of a first air resistance body, so that a measured signal for the direction of the respiratory flow is detected due to the direction dependence of the cooling effect of the respiratory flow flowing past on the second hot wire
The infrared sensor may have an U-shaped and one-piece design and may be pushed detachably over the housing and the windows of the respiratory flow sensor. The infrared radiation detector may be designed as a multispectral sensor for the measurement of a plurality of wavelength ranges of the infrared radiation.
The housing may essentially consist of a polysulfone or polycarbonate. The windows transparent to the infrared radiation may essentially consist of calcium fluoride and may also

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Combined respiratory flow sensor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Combined respiratory flow sensor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Combined respiratory flow sensor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3092162

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.