Combined porous organic and inorganic oxide materials...

Catalyst – solid sorbent – or support therefor: product or process – Catalyst or precursor therefor – Organic compound containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C502S401000, C502S405000, C502S407000, C502S240000, C502S263000, C516S100000, C252S184000

Reexamination Certificate

active

06465387

ABSTRACT:

BACKGROUND OF INVENTION
(1) Field of Invention
This invention relates to the synthesis of crystalline, combined porous inorganic and organic oxide materials possessing uniform framework-confined mesopores in the range 1 to 10
2
nm. The organic oxide precursors are hydrolyzable organic silanes which are incorporated into the framework. In particular, the present invention relates to such materials where the formation of the mesoporous structure is accomplished by a self-assembly mechanism involving complexation and/or hydrogen (H) bonding between aqueous or alcoholic emulsions of various nonionic poly(oxyalkylene) based surfactants and various mixed neutral inorganic and organic oxide precursors. This is followed by hydrolysis and subsequent condensation of hydrolysis products at ambient reaction temperatures. This templating approach allows for the removal of template through solvent extraction.
(2) Description of Prior Art
Modern human activities rely greatly upon porous solids of both natural and synthetic design. The pore structures of such solids are generally formed during crystallization or during subsequent treatments. These solid materials are classified depending upon their predominant pore sizes: (i) microporous, with pore sizes <1.0 nm; (ii) macroporous, with pore sizes exceeding 50.0 nm; and mesoporous, with pore sizes intermediate between 1.0 and 50.0 nm. Macroporous solids find limited use as adsorbents or catalysts owing to their low surface areas and large non-uniform pores. Micro- and mesoporous solids however, are widely utilized in adsorption, separation technologies and catalysis. There is an ever increasing demand for new, highly stable well defined mesoporous materials because of the need for ever higher accessible surface areas and pore volumes in order that various chemical processes may be made more efficient or indeed, accomplished at all.
Porous materials may be structurally amorphous, para-crystalline or crystalline. Amorphous materials, such as silica gel or alumina gel, do not possess long range crystallographic order, whereas para-crystalline solids such as &ggr;- or &eegr;-alumina are semi-ordered, producing broad X-ray diffraction peaks. Both these classes of materials exhibit very broad pore distributions predominantly in the mesoporous range. This wide pore distribution however, limits the effectiveness of catalysts, adsorbents and ion-exchange systems prepared from such materials.
Zeolites and some related molecular sieves, such as alumino-phosphates and pillar interlayered clays, possess rigorously uniform pore sizes. Zeolites are highly crystalline microporous aluminosilicates where the lattice of the material is composed of IO
4
tetrahedra (I=Al, Si) linked by sharing the apical oxygen atoms. Cavities and connecting channels of uniform size form the pore structures which are confined within the specially oriented IO
4
tetrahedra (Breck, D. W.,
Zeolite Molecular Sieves: Structure, Chemistry and Use
; Wiley and Sons; London, pages 1 to 100 (1974)). Zeolites are considered as a subclass of molecular sieves owing to their ability to discriminate small molecules and perform chemistry upon them. Molecular sieves in general are materials with crystalline frameworks in which tetrahedral Si and/or Al atoms of a zeolite or zeolitic lattice are entirely or in part substituted by other atoms such as B, Ga, Ge, Ti, Zr, V, Fe or P. Negative charge is created in the zeolite framework by the isomorphous substitution of Si
4+
ions by Al
3+
or similar ions. In natural zeolites, this charge is balanced by the incorporation of exchangeable alkali or alkaline earth cations such as Na
+
, K
+
, Ca
2+
. Synthetic zeolites utilize these and other cations such as quaternary ammonium cations and protons as charge balancing ions. Zeolites and molecular sieves are generally prepared from aluminosilicate or phosphate gels under hydrothermal reaction conditions. Their crystallization, according to the hereafter discussed prior art, is accomplished through prolonged reaction in an autoclave for 1-50 days and oftentimes, in the presence of structure directing agents (templates). The correct selection of template is of paramount importance to the preparation of a desired framework and pore network. A wide variety of organic molecules or assemblies of organic molecules with one or more functional groups are known in the prior art to provide more than 85 different molecular sieve framework structures. (Meier et al.,
Atlas of Zeolite Structure types
, Butterworth, London, pages 451 to 469 (1992)).
Recent reviews on the use of templates and the corresponding structures produced, as well as the mechanisms of structure direction have been produced by Barrer et al., Zeolites, Vol. 1, 130-140, (1981); Lok et al., Zeolites, Vol. 3, 282-291, (1983); Davis et al., Chem Mater., Vol. 4, 756-768, (1992) and Gies et al. Zeolites, Vol 12, 42-49, (1992). For example, U.S. Pat. No. 3,702,886 teaches that an aluminosilicate gel (with high Si/Al ratio) crystallized in the presence of Quaternary tetrapropyl ammonium hydroxide template to produce zeolite ZSM-5. Other publications teach the use of different organic templating agents and include; U.S. Pat. No. 3,709,979, wherein quaternary cations such as tetrabutyl ammonium or tetrabutyl phosphonium ions crystallize ZSM-11 and U.S. Pat. No. 4,391,785 demonstrates the preparation of ZSM-12 in the presence of tetraethyl ammonium cations. Other prior art teaches that primary amines such as propylamine and i-propylamine (U.S. Pat. No. 4,151,189), and diamines such as diaminopentane, diaminohexane and diaminododecane (U.S. Pat. No. 4,108,881) also direct the synthesis of ZSM-5 type structure. Hearmon et al (Zeolites, Vol. 10, 608 -611, (1990)) however, point out that the protonated form of the template molecule is most likely responsible for the framework assembly.
Thus the synthesis and characterization of mesoporous molecular sieves, high surface area metal oxides (800 to 1400 m
2
g
−1
) with uniform pore sizes (20 to 100 Å in diameter), have in recent years commanded much attention in the field of materials chemistry (Kresge, C. T., et al., 359, 710 (1992); Monnier, A., et al., Science, 261, 1299 (1993); Tanev, P. T., et al., Science 267, 865 (1995); Tanev, P. T., et al., Chem. Mater. 8, 2068 (1996); Bagshaw, S. A., et al., Science, 269, 1242 (1995); and Prouzet, E., et al., Angew. Chem. Int. Ed. Eng. 36, 516 (1997). These materials can be prepared by the assembly and subsequent co-condensation of metal oxide precursor molecules (such as TEOS, Si (OEt)
4
) around structure directing micelles consisting of surfactant molecules which can be either charged (such as alkyltrimethylammonium ions (Kresge, C. T., et al., Nature, 359, 710 (1992); and Monnier, A., et al., Science, 261, 1299 (1993)) or electrically neutral (such as primary alkylamines (Prouzet, E., et al., Angew. Chem. Int. Ed. Eng. 36, 516 (1997); Brunel, D., et al., Stud. Surf. Sci. Catal. 97, 173 (1995); and U.S. Patent No. 5,622,684 to Pinnavaia et al).
Focus has recently been put on researching methods to functionalize these materials in order to make mesostructured oxides useful for chemical applications. The chemical modification of mesoporous molecular sieves was first achieved by the incorporation or grafting of suitable moieties onto the surface of a preformed mesostructured oxide (Brunel, D., et al., Stud. Surf. Sci. Catal. 97, 173 (1995); and Cauvel, A., et al., AIP Conf. Proc. 354-477 (1996)), producing highly effective adsorbents (Mercier, L., et al., Adv. Mater. 9, 500 (1997); and Feng, X., et al., Science 276, 923 (1997)) and catalysts (Tanev, P. T., et al., Nature 368, 321 (1994); and Maschmeyer, T., et al., Nature 378, 159 (1995)). U.S. Patent Nos. 5,446,182 and 5,318,846 to Bruening et al describe various silane compounds with a liquid covalently bonded through an organic space to a solid support. The silane compounds disclosed in these patents can be starting materials for the compounds of the present invention and

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Combined porous organic and inorganic oxide materials... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Combined porous organic and inorganic oxide materials..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Combined porous organic and inorganic oxide materials... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2956070

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.