Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation
Reexamination Certificate
2002-06-12
2003-10-07
Smith, Ruth S. (Department: 3737)
Surgery
Diagnostic testing
Detecting nuclear, electromagnetic, or ultrasonic radiation
C600S431000, C600S436000, C378S004000, C250S363030, C250S363040
Reexamination Certificate
active
06631284
ABSTRACT:
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not Applicable
BACKGROUND OF THE INVENTION
1. Field of Invention
This invention relates to a tomograph which has the capability of operating in either X-Ray computerized tomography (CT) or positron emission tomography (PET) mode. More specifically, it relates to a combined PET and CT scanner which allows co-registered CT and PET images to be acquired sequentially in a single device, overcoming alignment problems due to internal organ movement, variations in scanner bed profile, and positioning of the patient for the scan.
2. Description of the Related Art
The role of PET imaging in oncology research and patient care is growing. The ability of PET to add unique functional information to that obtained by conventional anatomical-based modalities, such as CT and magnetic resonance (MR), is generating considerable interest. For space-occupying lesions in the head, chest, abdomen and pelvis, one of the best documented applications of PET is in the discrimination of benign from malignant causes. Thus far,
18
F-fluorodeoxyglucose (FDG) has been used to image the distribution of glucose uptake in all of these applications. The increased glucose metabolism of the neoplasm has been used for several purposes. Specific applications include, among other things, determining the presence of recurrent glioma versus radiation necrosis, determining the presence of recurrent colon carcinoma versus surgical scar and radiation changes, determining the presence of pancreatic cancer versus pancreatitis, determining the presence of malignant solitary pulmonary nodules versus benign nodules, and determining the presence of metastatic lung carcinoma versus reactive lymph node.
Some centers are investigating the use of quantitative analysis to increase specificity of FDG uptake. Others are expanding the tumor types that can be characterized. In addition, the development of other radiotracers which image different aspects of tumor metabolism and growth add a further dimension to this research activity. These tracers include
11
C-methionine to measure amino acid incorporation,
18
F-thymidine to measure nucleotide incorporation (a measure of cell proliferation), and
18
F-fluoromisonidazole to measure tissue hypoxia. These alternative imaging possibilities have prompted new investigations to determine whether physiological changes early after chemotherapy or radiation treatment can be seen by PET and used to provide predictions of tumor response.
Another increasingly important application of FDG in oncology is for whole-body scans. Using this technique to stage cancer, occult metastatic disease in almost any region of the body can potentially be detected by increased FDG accumulation. The sensitivity of this approach to small lesions, however, is unclear and may depend on accurate transmission information which is often time-consuming to obtain in whole-body mode.
Finally, the PET imaging of tumor masses, and particularly complex tumor masses with areas of cystic changes, necrosis, or surrounding edema, could potentially be used to guide diagnostic biopsies. In the head, this has been demonstrated to be fairly successful, but extracranial applications have not yet been studied systematically. While accuracy and reliability of CT-guided biopsies is high overall, typically greater than ninety percent (90%), it is known that this accuracy and reliability falls considerably to approximately eighty percent (80%) in the setting of complex lesions in presacral or retroperitoneal locations. Thus, functional knowledge of tumor metabolism would be helpful in better selecting an exact biopsy site in these conditions if correctly registered to CT data.
In recent years, there has been considerable progress in the development of techniques to co-register and align functional and anatomical images. This has been driven primarily by the demand for accurate localization of cerebral function visualized in PET studies where the low resolution morphology is, in most cases, insufficient to identify the related cerebral structures. Techniques to overcome this problem have been developed based, for example, on the identification of certain geometrical features common to both imaging modalities. For example, A. C. Evans et al,
J Cereb Blood Flow Metab
11(2), A69-A78 (1991) teach the use of landmark matching while D. G. Thomas et al., “Use of relocatable stereotactic frame to integrate positron emission tomography and computed tomography images: application to human malignant brain tumors,”
Stereotactic and Functional Neurosurgery
54-55, 388-392 (1990) teach the use of externally-placed reference or fiducial markers. Identification of the skull and brain contour from either the PET transmission or emission scan and the MR or CT scan has also been employed as an alignment technique by C. A. Pelizzari et al, “Accurate three-dimensional registration of CT, PET and MR images of the brain,”
J Comp Assist Tomogr
13, 2026 (1989). Following the identification of common structures in the two modalities, a rigid-body transformation is used to rotate and translate the MR or CT scan into the reference frame of the PET image, accounting for differences in pixel size between the two imaging modalities. A technique which uses a least squares approach to minimize the distribution of pixel-to-pixel ratios between the two images requiring alignment has proved successful both for PET to PET by R. P. Woods et al., “Rapid automated algorithm for aligning and reslicing PET images,”
J Comp Assist Tomogr
16, 620-633 (1992); and PET to MR by R. P. Woods et al, “MRI-PET registration with an automated algorithm,”
J Comp Assist Tomogr
17, 536-546 (1993). An interactive method has also been published U. Pietrzyk et al, “Three-dimensional alignment of functional and morphological tomograms,”
J Comp Assist Tomogr
14(1), 51-59 (1990), wherein a human observer makes alignment decisions based on visual inspection of images of brain sections displayed on a computer screen.
After two images from different modalities are aligned they can be displayed in a number of ways, such as, for example, side by side with linked cross-hair cursors, so that positional correspondence between the two image sets is easily established. This type of software tool is now readily available commercially. A different technique that is more appropriate for this project is that of image fusion, in which the two different image sets are combined into a single image so that positional correspondence is automatically established. Fusion techniques in general consist of either statistical methods or color-wash methods. Color-wash methods assign a color scale to one image and an intensity scale to the other image, whereas statistical methods select the most significant values from each image and assign as many orthogonal colors to each as possible for the particular display device.
Essentially all the registration techniques mentioned above have been developed for use in cerebral studies, and in particular brain activation. This is to some extent because PET images of cerebral flow and metabolism already contain a limited amount of low-resolution anatomical information which can be effectively exploited by the alignment procedures. However, the problems of alignment and co-registration in other regions of the human body are more difficult to solve owing to the absence of even low-resolution morphology in the functional image. This is particularly acute in the abdomen, where the PET emission scan shows little or no anatomical detail. Furthermore, the advantage of co-registering organs other than the brain has been recognized only recently, with, as described above, a rapid growth in the use of FDG in oncology.
It is evident, therefore, that in regions such as the thorax and abdomen, the demonstration of increased FDG uptake is limited in value without an unambiguous localization of tracer uptake to a specific structure (e.g. a tumor) seen on the corresponding CT image. It is desirable, therefore, to accomplish accurate
Nutt Ronald
Townsend David W.
CTI PET Systems, Inc.
Pitts & Brittian PC
Smith Ruth S.
LandOfFree
Combined PET and X-ray CT tomograph does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Combined PET and X-ray CT tomograph, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Combined PET and X-ray CT tomograph will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3145722