Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation
Reexamination Certificate
1998-10-16
2001-10-02
Lateef, Marvin M. (Department: 3737)
Surgery
Diagnostic testing
Detecting nuclear, electromagnetic, or ultrasonic radiation
C600S415000, C600S417000, C600S420000, C600S429000, C324S307000, C324S309000, C324S310000, C606S130000
Reexamination Certificate
active
06298259
ABSTRACT:
BACKGROUND OF THE ART
1. Field of the Invention
The present invention relates to surgical theaters, surgical procedures and apparatus for performing surgical procedures which combine magnetic resonance imaging and magnetic stereotaxis guidance or movement of medical devices or materials. The invention also relates to the design, construction and use of a neurosurgical theater where a magnetic surgery system (MSS) is functionally integrated with a magnetic resonance imaging (MRI) system so that MRI-guided, MSS-directed diagnostic and/or therapeutic procedures may be performed within the theater.
2. Field of the Invention
The concept of administering minimally invasive therapy, including minimally invasive drug delivered therapy follows recent trends in medical and surgical practice towards increasing simplicity, safety, and therapeutic effectiveness. Image-guided, minimally invasive therapies have already superseded conventional surgical methods in several procedures. For example, transvascular coronary angioplasty is often now an alternative to open-heart surgery for coronary artery bypass, and laparascopic cholecystectomy is often an alternative to major abdominal surgery for gall bladder removal. The use of the less invasive techniques has typically reduced hospital stays by 1-2 weeks and the convalescence periods from 1-2 months to 1-2 weeks.
While endoscopic, arthroscopic, and endovascular therapies have already produced significant advances in health care, these techniques ultimately suffer from the same limitation. This limitation is that the accuracy of the procedure is “surface limited” by what the surgeon can either see through the device itself or otherwise visualize (as by optical fibers) during the course of the procedure. That is, the visually observable field of operation is quite small and limited to those surfaces (especially external surfaces of biological masses such as organs and other tissue) observable by visible radiation, due to the optical limitations of the viewing mechanism. MR imaging, by comparison, overcomes this limitation by enabling the physician or surgeon to non-invasively visualize tissue planes and structures (either in these planes or passing through them) beyond the surface of the tissue under direct evaluation. Moreover, MR imaging enables differentiation of normal from abnormal tissues, and it can display critical structures such as blood vessels in three dimensions. Prototype high-speed MR imagers which permit continuous real-time visualization of tissues during surgical and endovascular procedures have already been developed. MR-guided minimally invasive therapy is expected to substantially lower patient morbidity because of reduced post-procedure complications and pain. The use of this type of procedure will translate into shorter hospital stays, a reduced convalescence period before return to normal activities, and a generally higher quality of life for patients. The medical benefits and health care cost savings are likely to be very substantial.
A specific area where research is moving forward on advances of this type is in the treatment of neurological disorders. Specifically, the advent of new diagnostic and therapeutic technologies promises to extend the range of application and the utility of intracerebral drug delivery procedures and thus possibly advance the efficacy of existing and/or planned treatments for various focal neurological disorders, neurovascular diseases and neurodegenerative processes. Currently, when the standard procedure requires neurosurgeons or interventional neuroradiologists to deliver drug therapy into the brain, the drug delivery device, such as a catheter, must either be passed directly through the intraparenchymal tissues to the targeted region of the brain, or guided through the vasculature until positioned properly. An important issue in either approach is the accuracy of the navigational process used to direct the movement of the drug delivery device. In many cases, the physical positioning of either part or all of the catheter's lumen within the brain is also important as, for example, in situations where a drug or some other therapeutic agent will be either infused or retroperfused into the brain through the wall or from the tip of the catheter or other drug delivery device.
New technologies like intra-operative magnetic resonance imaging and nonlinear magnetic stereotaxis, the latter discussed by G. T. Gillies, R. C. Ritter, W. C. Broaddus, M. S. Grady, M. A. Howard III, and R. G. McNeil, “Magnetic Manipulation Instrumentation for Medical Physics Research,”
Review of Scientific Instruments,
Vol.65, No.3, pp.533-562 (March 1994), as two examples, will likely play increasingly important roles here. In the former case, one type of MR unit is arranged in a “double-donut” configuration, in which the imaging coil is split axially into two components. Imaging studies of the patient are performed with this system while the surgeon is present in the axial gap and carrying out procedures on the patient. A second type of high-speed MR imaging system combines high-resolution MR imaging with conventional X-ray fluoroscopy and digital subtraction angiography (DSA) capability in a single hybrid unit. These new generations of MR scanners are able to provide the clinician with frequently updated images of the anatomical structures of interest, therefore making it possible to tailor a given interventional procedure to sudden or acute changes in either the anatomical or physiological properties of, e.g., a part of the brain into which a drug agent is being infused.
Nonlinear magnetic stereotaxis is the image-based magnetically guided movement of a catheter or some other form of a (temporary or lermanent) implant directly through the bulk brain tissues or along tracts within the neurovasculature or elsewhere within the body. Electromagnets or permanent magnets are used to magnetically steer the implant, giving (for example) the neurosurgeon or interventional neuroradiologist the ability to guide the object along a particular path of interest. (The implant might be either magnetically and/or mechanically advanced towards its target, but is magnetically steered, in either case. That is, magnetic fields and gradients are used to provide torques and forces (including linear forces) to orient or shift the position of the implant or device, with a mechanical pushing force subsequently providing none, some, or all of the force that actually propels the implant or device. Additional force may be provided magnetically, hydraulically or by some other force means.) The implant's position is monitored by biplanar fluoroscopyor some other non-invasive visualization or imaging method, and its location is or can be indicated on a computerized atlas of brain images derived from a pre-operative MR scan. Among other applications, the implant might be used to tow a pliable catheter or other drug delivery device to a selected intracranial location through the brain parenchyma or via the neurovasculature. Magnetic manipulation of catheters and other probes is well documented in research literature. For example, Cares et al. (J. Neurosurg, 38:145, 1973) have described a magnetically guided microballoon released by RF induction heating, which was used to occlude experimental intracranial aneurysms. More recently, Kusunoki et al. (Neuroradiol 24: 127, 1982) described a magnetically controlled catheter with cranial balloon useful in treating experimental canine aneurysms. Ram and Meyer (Cathet. Cardiovas. Diag.22:317, 1991) have described a permanent magnet-tipped polyurethane angiography catheter useful in cardiac interventions, in particular intraventricular catheterization in neonates.
U.S. Pat. No. 4,869,247 teaches the general method of intraparenchymal and other types of magnetic manipulation, and U.S. Pat. Nos. 5,125,888; 5,707,335; and 5,779,694 describe the use of nonlinear magnetic stereotaxis to maneuver a drug or other therapy delivery catheter system within the brain. U.S. Pat. No. 5,654,864 teaches a general meth
Gillies George T.
Kucharczyk John
James Talaya
Lateef Marvin M.
Mark A. Litman & Assoc. P.A.
LandOfFree
Combined magnetic resonance imaging and magnetic stereotaxis... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Combined magnetic resonance imaging and magnetic stereotaxis..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Combined magnetic resonance imaging and magnetic stereotaxis... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2553714