Pulse or digital communications – Systems using alternating or pulsating current – Plural channels for transmission of a single pulse train
Reexamination Certificate
2001-01-22
2003-04-15
Pham, Chi (Department: 2631)
Pulse or digital communications
Systems using alternating or pulsating current
Plural channels for transmission of a single pulse train
C375S148000
Reexamination Certificate
active
06549585
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention relates to wireless communication and, more particularly, to techniques for effective wireless communication in the presence of fading, co-channel interference, and other degradations.
Rapid growth in mobile computing and other wireless data services is inspiring many proposals for high speed data services in the range of 64-144 kbps for micro cellular wide area and high mobility applications and up to 2 Mbps for indoor applications. Research challenges include the development of efficient coding and modulation, and signal processing techniques to improve the quality and spectral efficiency of wireless communications and better techniques for sharing the limited spectrum among different high capacity users.
The physical limitation of the wireless channel presents a fundamental technical challenge for reliable communications. The channel is susceptible to time-varying noise, interference, and multipaths. Power and size limitations of the communications and computing device in a mobile handset constitute another major design consideration. Most personal communications and wireless services portables are meant to be carried in a briefcase and/or pocket and must, therefore, be small and lightweight. This translates to a low power requirement since small batteries must be used. However, many of the signal processing techniques which may be used for reliable communications and efficient spectral utilization demand significant processing power, precluding the use of low power devices. Continuing advances in VLSI and integrated circuit technology for low power applications will provide a partial solution to this problem. Still, placing most of the signal processing burden on fixed locations (base stations) with relatively larger power resources than the mobile units will, likely, continue to be the trend in wireless systems design.
Perhaps the single most important parameter in providing reliable communications over wireless channels is diversity. Diversity techniques which may be used include time, frequency, and space diversity
Time diversity: channel coding in combination with limited interleaving is used to provide time diversity. However, while channel coding is extremely effective in fast fading environments (high mobility), it offers very little protection under slow fading (low mobility) unless significant interleaving delays can be tolerated.
Frequency diversity: the fact that signals transmitted over different frequencies induce different multipath structures and independent fading is. However, when the multipath delay spread is small compared to the symbol period, frequency diversity is not helpful.
Space diversity: the receiver/transmitter uses multiple antennas that are separated for reception/transmission and/or differently polarized antennas to create independent fading channels. Currently, multiple antennas at base-stations are used for receive diversity at the base. However, it is difficult to have more than two antennas at the mobile unit due to the size and cost of multiple chains of RF conversion.
Previous work on transmit diversity can be classified into three broad categories: schemes using feedback, schemes with feedforward or training information but no feedback, and blind schemes. The third category (blind schemes) relies primarily on multiple transmit antennas combined with channel coding to provide diversity. An example of this approach is disclosed in the aforementioned copending application Ser. No. 09/074224, 1998, titled “Transmitter Diversity Technique for Wireless Communications,” filed May 7.
SUMMARY OF THE INVENTION
Improved performance is attained in an illustrative arrangement where K synchronized terminal units that transmit on N antennas to a base station having M≧K antennas, by combining interference cancellation (IC) and maximum likelihood (ML) decoding. More specifically, space-time block coding is employed in transmitters that employ N transmit antennas each, and the signals are received in a receiver that employs M receiving antennas. In accordance with the processing disclosed herein, by exploiting the structure of the space-time block code, K-1 interfering transmitting units are cancelled at the receiver, regardless of the number of transmitting antennas, N, when decoding the signals transmitted by a given mobile unit. In another embodiment of the principles of this invention, signals of a first terminal unit are decoded first, and the resulting decoded signals are employed to cancel their contribution to the signals received at the base station antennas while decoding the signals of the remaining K-1 terminal units. The process is repeated among the remaining K-1 terminal units. That is, among the remaining K-1, signals of a first terminal unit is decoded first and the resulting decoded signals are employed to cancel their contribution to the signals received at the base station antennas while decoding the signals of the remaining K-2 terminal units, and so on. This procedure is repeated K times, each time starting with decoding signals of a particular terminal unit. This successive procedure will yield additional performance improvement.
Both zero-forcing (ZF) and minimum mean-squared error (MMSE) interference cancellation (IC) and maximum likelihood (ML) techniques are disclosed.
REFERENCES:
patent: 5790606 (1998-08-01), Dent
patent: 5822380 (1998-10-01), Bottomley
patent: 6178196 (2001-01-01), Naguib et al.
patent: 6188736 (2001-02-01), Lo et al.
Naguib Ayman F.
Seshadri Nambirajan
AT&T Corp
Brendzel Henry
Pham Chi
Tran Khai
LandOfFree
Combined interference cancellation and maximum likelihood... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Combined interference cancellation and maximum likelihood..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Combined interference cancellation and maximum likelihood... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3062325