Combined cycle electric power plant

Power plants – Combustion products used as motive fluid – Multiple fluid-operated motors

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C060S039780

Reexamination Certificate

active

06354073

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a combined cycle power plant that combines a gas turbine plant and a steam turbine plant.
2. Description of the Related Art
A combined cycle power plant is a power generation system that combines a gas turbine plant and a steam turbine plant, and heat energy in the high temperature region is allotted to the gas turbine and heat energy in the low temperature region is allotted to the steam turbine. Heat energy is efficiently recovered and used, and recently, in particular, this power generation system has received much attention.
In this combined cycle power plant, research and development is advancing concerning the one point related to increasing efficiency, that is, how high the high temperature region of the gas turbine can be raised.
In contrast, in the formation of the high temperature region, it is necessary to provide a cooling system to maintain the heat resistance of the turbine structure body, and conventionally air has been used as the cooling medium in this cooling system.
However, to the extent that air is used as the cooling medium, for example, even when the high temperature region can be attained, when considering both the power loss necessary for increasing the air used in cooling to the necessary pressure by the air compressor and the result that the energy of the gas decreases because of the decreasing of the average gas temperature due to the final mixing of air used in the cooling of parts inside the turbine flow passage transited by the high temperature gas, an increase over the present heat efficiencies cannot be expected at this point in time.
In order to solve this problem and implement an increase in efficiency, switching the above a cooling medium in the gas turbine from gas to steam has been proposed.
One example of this is Japanese Unexamined Patent Application, First Publication, No. Hei 05-163960. However, although the invention disclosed in this publication discloses the notion of using steam as a cooling medium in a gas turbine, there remain many problems in the details that must be thought about and solved.
For example, while the gas turbine is stopped, the steam that remains in the steam cooling system must be purged, and in the Japanese Unexamined Patent Application, First Publication, No. Hei 05-163960, a gas turbine is structured as shown in
FIG. 2
for this purpose.
That is, while the gas turbine
13
is stopped, immediately before stopping, a supply steam stop valve
55
and a recovery steam stop valve
74
are closed, and the supply of cooling-steam from the cooling steam supply system
51
and the recovery of cooled steam via the steam recovery system
53
is cut off.
On the other hand, by opening the exhaust valve
86
, and connecting the steam supply system
52
of the turbine high temperature cooled part
13
a
to the outside of the system via the drain exhaust system
85
, the cooling of the turbine
13
is switched to air cooling by the compressor bleeding via the air supply line
81
, and at the same time, the residual steam in the cooling steam supply system
51
and the steam supply system
52
is removed to the outside of the system, and it is possible to prevent draining from occurring during stoppage.
In addition, even if in the worst case draining should occur during stoppage in the cooling steam supply system
51
and the steam supply system
52
of the steam cooling system
50
A, when the gas turbine is actuated, the drainage will be moved outside the system.
However, during a normal stoppage of the gas turbine, since the pressure of the compressor discharge air falls in a rather short time, there is the concern that not all residual steam can be completely purged with the air volume after stoppage.
In consideration of this, there are operation means that implement purging by switching from cooling steam to compressor discharged air before the gas turbine stoppage, but generally in these switching cooling air systems, because there are cutoff valves, piping, etc., there is naturally pressure loss, and in places in the high temperature parts are applied, the air pressure in the cooling passage is possibly lower than the combustion gas pressure in the working passage.
It is preferable that while the gas turbine is in operation the internal pressure of the cooling passage of the gas turbine high temperature parts be always maintained at a high pressure over the pressure of the combustion gas in the working passage. In the case that in the actual part there is even a small pinhole, the combustion gas will flow back through this hole, and it is possible that local heating and scorching of the connected pipes, not only the cooling passage, will be caused.
One example is explained with FIG.
3
. The steam cooling structure in the combustor
1
of the gas turbine
1
generally a cylindrical thin plate structure forming the contours of the combustor, and on the inside, a plurality of steam passages are disposed. On the outside of the cylinder there is the emitted air from the compressor
2
, and on the inside is a high temperature gas combusted by slightly decompressing the emitted air (lowered only by the pressure loss incurred while the air transits the air intake of the combustor).
Now, while the gas turbine
3
is in operation, this combustor cooling steam is maintained at a pressure higher than the combustion gas, and before the gas turbine
3
is stopped, this steam is switched to the emitted air of the compressor
2
. Thereby, the initial pressure P
1
gradually decreases in the process of the emitted air of the compressor
2
transiting the stop valves and pipes disposed in the switching system
4
introduced into the steam cooling system, and in the cooling passages, falls to a final P
2
. In contrast, the internal pressure of the combustor
1
is P
3
, and because there is a slight difference between P
1
and P
3
, the state in which P
3
>P
1
can easily occur.
At this time, if there is a small pinhole in the thin plate structure of the combustor
1
, the high temperature combustion gas inside will leak to the cooling passages via this hole, and not only will the thin plate structure in the combustor
1
be damaged, but finally the combustion gas arrives at the pipes connecting this cooling system, and the extent of the damage widens considerably.
Therefore, while the notion of using the emitted air of the compressor
2
to purge the steam during a gas turbine stoppage seems promising at first sight, there is the problem produced by this danger.
In order to solve the above-described problem, it is an object of the present invention to provide a means which, when a gas turbine is stopped, just before the stoppage, steam sufficiently pressurized for cooling is used, and immediately after the stoppage, most of it is self-expelled under its own pressure, and the residual part can be more simply, reliably, and safely purged.
SUMMARY OF THE INVENTION
In order to solve the above problems, the present invention provides a combined cycle power plant that is structured so as to combine a gas turbine plant and a steam turbine plant, comprises an exhaust heat recovery boiler for generating steam driving steam turbine by using the exhaust heat from the gas turbine, and a steam cooling system for cooling by steam the high temperature cooled part of this gas turbine and the superheated steam from this steam cooling system is recovered in a steam turbine, wherein a combined cycle power plant provides a means that closes the steam entrance of this steam cooling system immediately after the stoppage of the gas turbine, a means for discharging the residual steam to the atmosphere, and a means for supplying dry air, and the important parts of the steam cooling system necessary for purging the residual steam by the means for closing the steam entrance of the steam cooling system are partitioned into sections, the passage for purging the residual steam by the means that discharges the residual steam to the atmosphere is secured, and by supplying dry ai

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Combined cycle electric power plant does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Combined cycle electric power plant, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Combined cycle electric power plant will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2832195

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.