Refrigeration – Using electrical or magnetic effect – Thermoelectric; e.g. – peltier effect
Reexamination Certificate
2002-08-23
2004-05-11
Doerrler, William C. (Department: 3744)
Refrigeration
Using electrical or magnetic effect
Thermoelectric; e.g., peltier effect
C062S003200, C062S003610, C062S244000
Reexamination Certificate
active
06732533
ABSTRACT:
FIELD OF THE INVENTION
This invention is directed to the field of devices for heating and/or cooling liquid products, especially formula containing bottles for infants, more particularly to a compact and portable, combined heating/cooling device that incorporates a thermoelectric module to effect the cooling and heating.
BACKGROUND OF THE INVENTION
The present invention relates to a portable cooling and heating device that has particular utility for handling infant baby bottles, especially for the bedside feeding of an infant late at night. The readiness of the device allows the parents to properly maintain a baby's bottle in a cooled condition until needed, then heated, and/or cooled and heated at the same time, for consumption, all without having to making a trip to the kitchen while the baby cries for nourishment. The same convenience is provided to the parents while visiting family and friends, or when on vacation.
There are commercial systems and prior art disclosures relating to evacuated bottles and insulated containers of various configurations for passively maintaining the temperature of beverages, either hot or cool. Eventually, the temperature changes, a hot liquid cooling down or a cool liquid warming up to unsuitable levels. Accordingly, there is a need for a system that maintains the desired temperature level, while providing portability to the user of the device.
Exemplary prior art devices are illustrated and described in the following U.S. Patents:
a.) U.S. Pat. No. 6,412,287, to Hughes et al., relates to a storage unit for selectively heating and/or cooling items placed therein. The storage unit has a first storage compartment and a second storage compartment. A thermoelectric module is positioned in between the first and second storage compartments. The thermoelectric module regulates and maintains various desired temperatures within the storage compartments. Particularly, the thermoelectric module is capable of heating the first storage compartment and cooling the second storage compartment.
b.) U.S. Pat. No. 6,082,114, to Leonoff, teaches devices for heating or cooling beverage containers, such as hot drinks or cold drinks, in a vehicle. A beverage container, such as a can of pop, is inserted into the device and its insertion activates the selected function, either heating or cooling. The beverage container may be inserted with one hand and removed with one hand, allowing it to be used safely by a driver. Heat transfer members within the device conform to the beverage container, and automatically adjust for different sizes of beverage container circumferences. The heat transfer members also automatically adjust themselves to accommodate varying top-to-bottom taper of beverage containers. A thermally conductive and pliable interface layer between the beverage container and the heat transfer members insures efficient heat transfer contact, and efficient heat transfer.
c.) U.S. Pat. No. 5,269,146, to Kerner, discloses a closed-loop cooling system in combination with a thermoelectric heat exchanger, whereby, the heat exchange liquid provides quick and efficient heat exchange with a thermoelectric device and is heated or cooled by passing the heat exchange liquid through an air core heat exchanger by energy efficient pump means. In a cooling system, heated water from the heat exchanger is pumped through an air core heat exchanger and then recirculated through a labyrinthine cooling block in thermal communication with the thermoelectric device. The labyrinth within the cooling block is of low back pressure to minimize the amount of energy required to pump the liquid. The liquid-driven rapid heat exchange and the pumping assures circulation and the closed system assures that the liquid is not wasted or lost. The process is carried out without phase change. An apparatus incorporating the invention can be battery-operated and portable and may provide cooling solutions for specific applications where large temperature differentials may be maintained and/or precision temperature control is important in a portable environment. Where the speed of circulation is high and the internal back pressure of the heat exchange liquid is low, there is less expenditure of energy in a closed system.
d.) U.S. Pat. No. 4,914,920, to Carnagie et al., relates to a device for actively maintaining the temperature of a beverage in a container comprising a housing with a compartment that is configured to receive the beverage container. A solid state heat pump that is mounted to the housing is selectively energized to provide either a heating or cooling environment in the compartment for controlling the beverage temperature.
While the foregoing prior art devices attempt to solve some of the problems for people on the go, such as parents of a new born child, none offer the compactness and portability of a device to provide both heating and cooling of a vessel, particularly a baby bottle. The manner by which the present invention achieves the goals hereof will become more apparent in the description which follows, especially when read in conjunction with the accompanying drawings.
SUMMARY OF THE INVENTION
This invention teaches a compact and portable, heating and cooling device for bottles, cans, and the like, particularly for handling baby bottles. The device comprises a pair of generally circular cavity members sized to receive and be in thermal communication with the baby bottle, where the cavity members are arranged in close proximity to one another. A first cavity member is mounted on a heat sink, which in turn is mounted on a fan housing containing an electrically rotatable fan. Disposed between the cavity members and in intimate contact therewith, is a miniature solid state, ceramic thermoelectric heat pump in the form of a module, where the module, when electrically energized, will heat one cavity member and cool the other cavity member. Finally, an electrical power source, such as one's house current (using an AC to DC converter) or vehicle battery, is provided to activate the fan and heating cooling module. Optionally, thermostats may be included with each cavity member to control operation of the module in heating and cooling a respective cavity member.
Accordingly, a feature of the invention is to provide an easily handled and portable device to heat and cool a bottle, can or the like. Another feature hereof is the provision of the use of a solid state, ceramic thermoelectric module, positioned between and in intimate contact with a pair of bottle receiving cavities or receptacles, where the module effects heating or cooling of the bottle.
A still further feature of the device of this invention is the incorporation of a heat sink and rotatable fan to facilitate the transfer of heat in the hot side in heating the cavity, with or without the bottle received in the hot side cavity.
REFERENCES:
patent: 4914920 (1990-04-01), Carnagie et al.
patent: 5209069 (1993-05-01), Newnan
patent: 5269146 (1993-12-01), Kerner
patent: 5699669 (1997-12-01), Gebhard
patent: 5720171 (1998-02-01), Osterhoff et al.
patent: 5969941 (1999-10-01), Cho
patent: 5970719 (1999-10-01), Merritt
patent: 6064044 (2000-05-01), Jerome
patent: 6082114 (2000-07-01), Leonoff
patent: 6412287 (2002-07-01), Hughes et al.
Doerrler William C.
Noll William B.
Zec Filip
LandOfFree
Combined bottle cooling and heating device does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Combined bottle cooling and heating device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Combined bottle cooling and heating device will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3234220