Combined aircrew systems tester (CAST)

Surgery – Respiratory method or device – Including body or head supported means covering user's scalp

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C128S202120, C128S202130, C128S202190, C128S206210

Reexamination Certificate

active

06820616

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a combined aircrew systems tester, and more particularly, to a combined aircrew systems tester enabling functional testing of aircrew equipment.
2. Description of the Background Art
Life support systems are very crucial for members of an aircrew of aircraft and especially high performance aircraft. Life support systems include COMBAT EDGE (combined advanced technology enhanced design G-ensemble) system components. The system includes a G-suit, an oxygen mask, goggles, and a communication equipment. Specifically, the COMBAT EDGE system includes the MBU-20/P Oxygen Mask, CSU-17/P Vest Assembly, HGU-55/P Helmet with occipital bladder, CRU-94/P Integrated Terminal Block or PBG (pressure breathing for Gs) Chest Mounted Regulator or both CRU-94/P Integrated Terminal Block and PBG Chest Mounted Regulator, and all associated Anti-G garments.
Life support systems are very important for the aircrew and therefore, it is extremely important that such vital systems be properly tested. If any of the above systems do not work, a pilot for instance may be unable to control the aircraft.
Earlier systems had different testing units for each type of life support. A separate cumbersome unit would be needed for testing an oxygen mask and another separate large unit would be needed for testing the anti-G suit. This is expensive and very awkward for users to test their equipment at different stations while for instance they are wearing such equipment. Moreover, the power sources for such equipment are usually not commonly available because of the high power necessary to drive such complicated devices.
Particularly, a conventional tester for an oxygen mask requires a separate high pressure source of breathing air/oxygen. It is awkward for users to bring the tester and the separate high pressure source.
For the foregoing reasons, there is a need for a tester that can be inexpensively and efficiently test life support equipment.
SUMMARY OF THE INVENTION
It is therefore an object of the present invention to have an integrated unit that can functionally test the various aircrew equipment.
It is another object to have an aircrew systems tester that can test all of the aircrew life support equipment and communication systems.
It is yet another object to have a unit that can test the aircrew life support equipment and yet not require much power for operation.
It is still yet another object to have a unit that tests the aircrew life support equipment and yet not require high pressure air/oxygen cylinders.
It is still another object to have a unit that tests the aircrew life support equipment and significantly reduces supporting man hours, deployment costs and mobility footprint.
It is still further object to have a life support system tester that is able to operate in a chemical warfare environment.
To achieve the objectives of the present invention, there is provided a tester including a gas system which includes an input filter located in an inlet port, the input filter filtering an air to prevent foreign particles from entering the gas system, a first compressor compressing the air, the first compressor comprising at least one blower, a speed of the blower depending on a voltage applied to the blower, a second compressor compressing the air, the second compressor producing a lower flow than the first compressor, the second compressor producing a higher pressure than the first compressor, a first flow sensor detecting a flow of the compressed air and a leaking of the aircrew systems, a second flow sensor detecting the flow of the compressed air and the leaking of the aircrew systems, a first flow valve mounted for controlling the flow of the compressed air to the first flow sensor, a second flow valve mounted for controlling the flow of the compressed air to the second flow sensor, a regulator regulating a pressure of the second system, a first pressure sensor detecting a pressure of the mask, a second pressure sensor detecting the pressure of the second system, a first pressure valve for controlling the pressure of the first system, a second pressure valve for controlling the pressure of the second system, and a controller controlling an operation of the gas system. The inlet filter designed to accept a C2 (chernical) filter. The gas system is particularly suitable for testing a mask and a G-suit. It is preferred that the first compressor comprises three regenerative blowers, a first blower, a second blower, and a third blower, connected in series. It is preferred that each of the three regenerative blowers has 21 inch H
2
O of a maximum output pressure. In a preferred embodiment, the first compressor compresses the air until a G-suit pressure reaches 55 inch H
2
O, the second compressor starts to compress the air when the G-suit pressure is about 55 inch H
2
O and finishes when the G-suit pressure is about 70 inch H
2
O. The first flow sensor is able to measure the flow from 0 to 10,000 cc/min (cubic centimeters per minute), and the second flow sensor is able to measure the flow 0 to 300 cc/min. The first flow valve and the second flow valve determine which sensor is used. The gas system further includes a digital indicator reading out data outputted from the first and second flow sensors. The gas system further includes a first limit valve for limiting a pressure of the first system. The operation of the gas system is controlled by a main printed circuit board (PCB) which uses CMOS (complementary metal oxide semiconductor) logic. The present invention further includes a speed control printed circuit board (PCB) which controls the first compressor by controlling a voltage applied to the first compressor.
The tester of the present invention includes a first unit for testing a mask, a second unit for testing a G-suit, and a third unit for testing a communication system. The tester can further includes a fourth unit for testing a goggle. Since the tester of the present invention is self contained and integrated, a control panel of the tester of the present invention has a plurality of switches and indicators for controlling the tests for the life support systems of an aircrew member. The third unit preferably includes an input accommodating a microphone, an input accommodating headset, and two inputs for carbon microphones. The third unit further includes a built-in continuity tester. The third unit can further includes an accommodation of a second headset and microphone accommodating a first user to communicate with a second user.
A method of operating a gas system for testing aircrew systems which includes a mask and a G-suit is comprised of the steps of selecting a test mode between the test mode for the normal breathing and the test mode for the PBG breathing, filtering an ambient air with a C2 filter, compressing the air, detecting a flow of the air, and detecting a pressure of the mask or G-suit. When the mask test mode is selected, the step of compressing the air further includes the step of turning on the first compressor. When the PBG mode test is selected, the step of compressing the air further includes the steps of turning on the first compressor until a G-suit pressure reaches 55 inch H
2
O, turning off the first compressor and turning on the second compressor when the G-suit pressure is about 55 inch H
2
O, and turning off the second compressor when the G-suit pressure is about 70 inch H
2
O. The first compressor is controlled by adjusting a voltage applied to each of the first, second, and third blowers and by deciding how many blowers are turned on.
With this configuration, the present invention enables functional testing of nearly all aircrew equipment including the COMBAT EDGE (Combined Advanced Technology Enhanced Design “G” Ensemble) system components.


REFERENCES:
patent: 4344144 (1982-08-01), Damico et al.
patent: 4796467 (1989-01-01), Burt et al.
patent: 4846166 (1989-07-01), Willeke
patent: 4914957 (1990-04-01), Dougherty
patent: 5245993 (1993-09-01), McGrady et al.
patent: 5289819 (1994-03-01),

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Combined aircrew systems tester (CAST) does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Combined aircrew systems tester (CAST), we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Combined aircrew systems tester (CAST) will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3291171

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.