Combinatorial preparation and testing of heterogeneous...

Chemistry: molecular biology and microbiology – Enzyme – proenzyme; compositions thereof; process for... – Catalytic antibody

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S168000, C435S287800, C435S287900, C435S091500, C435S091500, C435S091500, C436S181000, C436S134000, C436S127000, C436S119000, C436S113000

Reexamination Certificate

active

06720171

ABSTRACT:

The invention relates to a process for the combinatorial preparation and testing of heterogeneous catalysts and catalysts obtained by this process.
To prepare and study novel chemical compounds, in addition to classical chemistry which is directed towards the synthesis and study of individual substances, combinatorial chemistry has developed. In this approach, a multiplicity of reactants were reacted in a one-pot synthesis and analysis was carried out as to whether the resultant reaction mixture displays the desired properties, for example a pharmacological activity. If an activity was found for such a reaction mixture, it was then necessary to determine in a further step which specific substance in the reaction mixture was responsible for the activity. In addition to the high expenditure for determining the actual active compound, it was difficult with a multiplicity of reactants to exclude to unwanted side reactions.
In another combinatorial synthesis approach, a multiplicity of compounds were synthesized by specific dosage and reaction of a number of reactants in a multiplicity of different reaction vessels. In this process, preferably, in each reaction vessel one reaction product is present, so that in the event of, for example, a given pharmacological activity of a mixture, the starting materials used for its preparation are known immediately.
In addition to the first applications of this more specific combinatorial synthesis in the search for novel pharmacologically active substances, very recently the synthesis method has also been extended to low-molecular-weight organic compounds and to organic and inorganic catalysts.
X.-D. Xiang et al., “A Combinatorial Approach for Materials Discovery”, Science 268, (1995), pages 1738 to 1740 describe the preparation of BiSrCaCuO and YBaCuO superconductivity films on substrates, a combinatorial array of different metal compositions being obtained by physical masking processes and vapor deposition techniques in the deposition of the appropriate metals. After the calcination, different compositions are present at different positions of the array and can be studied by microprobes, for their conductivity for example.
WO 96/11878 describes, in addition to the preparation of such superconductivity arrays, the preparation of zeolites, the amounts required in each case being metered without prior mixing from a plurality of metal salt solutions using an ink jet onto a type of spot plate, a precipitation starting on addition of the last solution. BSCCO superconductors can also be prepared by separate metering of the individual nitrate solutions of the metals required by spraying onto a type of spot plate and subsequent heating.
Various types of heterogeneous catalysts can be prepared using the known processes. However, testing the catalysts is complex and frequently cannot be performed under realistic conditions, e.g. using the required residence times of the reactants on the catalyst, since the catalysts are present, for example, on a relatively large, generally flat support and this must be charged, for example, with a gas mixture to be reacted.
It is an object of the present invention to provide a process for preparing arrays of inorganic heterogeneous catalysts or their precursors in which the resultant catalysts can be tested with low expenditure and under conditions which resemble an industrial process. In addition, the disadvantages of the existing systems are to be avoided. Corresponding arrays are also to be provided.
Therefore, DE-A-198 05 719 proposed arrays of, preferably inorganic, heterogeneous catalysts and/or their precursors made up of a body which has, preferably parallel, through-channels in which at least n channels comprise n different, preferably inorganic, heterogeneous catalysts and/or their precursors, where n is 2, preferably 10, particularly preferably 100, in particular 1000, especially 10,000. The body can be a tube-bundle reactor or heat exchanger and the channels are tubes, or a block made of a solid material which has the channels, in the form of boreholes for example.
It is an object of the present invention to provide processes for preparing arrays of heterogeneous catalysts and/or their precursors which extend the spectrum of arrays accessible via WO.
We have found that this object is achieved by the processes described below for preparing arrays of heterogeneous catalysts and/or their precursors, made up of a body which has, preferably parallel, through-channels and in which at least n channels comprise n different heterogeneous catalysts and/or their precursors, where n is 2, preferably 10, particularly preferably 100, in particular 1,000, especially 10,000.
The term “array of inorganic heterogeneous catalysts or their precursors” describes here an arrangement of different inorganic heterogeneous catalysts or their precursors on predetermined areas of a body which are spatially separate from one another, preferably a body having parallel through-channels, preferably a tube-bundle reactor or heat exchanger. The geometric arrangement of the individual areas to one another can be chosen freely in this case. For example, the areas can be arranged in the manner of a row (quasi one-dimensional) or a chessboard pattern (quasi two-dimensional). In a body having parallel through-channels, preferably a tube-bundle reactor or heat exchanger having a multiplicity of tubes parallel to one another, the arrangement becomes clear when a cross-sectional area perpendicular to the longitudinal axis of the tubes is considered: an area results, in which the individual tube cross sections reproduce the different areas separated from one another. The areas or tubes can, for example for tubes having a circular cross section, also be present in a dense packing, so that different rows are arranged from areas staggered to one another.
The term “body” describes a three-dimensional object which has a multiplicity (at least n) of through-channels. The channels thus connect two surface areas of the body and run through the body. Preferably, the channels are essentially, preferably completely, parallel to one another. In this case, the body can be made up of one or more materials and can be solid or hollow. It can have any suitable geometric shape. Preferably it has two surfaces parallel to one another in which in each case one orifice of the channels is situated. The channels preferably run perpendicularly to these surfaces. An example of a body of this type is a parallelepiped or cylinder in which the channels run between two parallel surfaces. However, a multiplicity of similar geometries is also conceivable.
The term “channel” describes a connection running through the body between two orifices situated on the body surface which, for example, permits the passage of a fluid through the body. The channel here can have any desired geometry. It can have a cross-sectional area changing over the length of the channel or, preferably, can have a constant channel cross-sectional area. The channel cross section can have, for example, an oval, round or polygonal outlet with straight or rounded connections between the corners of the polygon. Preference is given to a round or equilateral polygonal cross section. Preferably, all channels in the body have the same geometry (cross section and length) and run parallel to one another.
The terms “tube-bundle reactor” and “heat exchanger” describe collective parallel arrangements of a multiplicity of channels in the form of tubes, where the tubes can have any desired cross section. The tubes are arranged in a fixed spatial relationship to one another, are preferably present spatially separated from one another and are preferably surrounded by a shell which encloses all of the tubes. By this means, for example, a heating or cooling medium can be conducted through the shell, so that all of the tubes can be heated or cooled uniformly.
The term “block of a solid material” describes a body of a solid material (which in turn can be made up of one or more starting materials) which has the channels, for examp

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Combinatorial preparation and testing of heterogeneous... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Combinatorial preparation and testing of heterogeneous..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Combinatorial preparation and testing of heterogeneous... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3217580

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.