Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Nitrogen containing other than solely as a nitrogen in an...
Reexamination Certificate
1999-12-17
2002-10-01
Webman, Edward J. (Department: 1617)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Nitrogen containing other than solely as a nitrogen in an...
C514S252130, C514S718000, C514S741000, C514S824000, C514S431000, C424S451000, C424S464000
Reexamination Certificate
active
06458851
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to methods of treating cardiovascular diseases, and specifically relates to combinations of compounds, compositions, and methods for their use in medicine, particularly in the prophylaxis and treatment of hyperlipidemic conditions such as are associated with atherosclerosis, hypercholesterolemia, and other coronary artery disease in mammals. More particularly, the invention relates to ileal bile acid transporter (IBAT) inhibiting compounds. The invention also relates to cholesteryl ester transfer protein (CETP) activity inhibiting compounds.
2. Description of Related Art
It is well-settled that hyperlipidemic conditions associated with elevated concentrations of total cholesterol and low-density lipoprotein (LDL) cholesterol are major risk factors for coronary heart disease and particularly atherosclerosis. Since high levels of LDL cholesterol increase the risk of atherosclerosis, methods for lowering plasma LDL cholesterol would be therapeutically beneficial for the treatment of atherosclerosis and other diseases associated with accumulation of lipid in the blood vessels. These diseases include, but are not limited to, coronary heart disease, peripheral vascular disease, and stroke.
Atherosclerosis underlies most coronary artery disease (CAD), a major cause of morbidity and mortality in modern society. High LDL cholesterol (above about 180 mg/dl) and low HDL cholesterol (below 35 mg/dl) have been shown to be important contributors to the development of atherosclerosis. Other diseases or risk factors, such as peripheral vascular disease, stroke, and hypercholesterolaemia are negatively affected by adverse HDL/LDL ratios.
Interfering with the recirculation of bile acids from the lumen of the intestinal tract is found to reduce the levels of serum cholesterol in a causal relationship. Epidemiological data has accumulated which indicates such reduction leads to an improvement in the disease state of atherosclerosis. Stedronsky, in “Interaction of bile acids and cholesterol with nonsystemic agents having hypocholesterolemic properties,”
Biochimica et Biophysica Acta,
1210, 255-287 (1994) discusses the biochemistry, physiology and known active agents surrounding bile acids and cholesterol.
Transient pathophysiologic alterations are shown to be consistent with interruption of the enterohepatic circulation of bile acids in humans with an inherited lack of IBAT activity, as reported by Heubi, J. E., et al. See “Primary Bile Acid Malabsorption: Defective in Vitro Ileal Active Bile Acid Transport”,
Gastroenterology,
83, 804-11 (1982).
In another approach to the reduction of recirculation of bile acids, the ileal bile acid transport system is a putative pharmaceutical target for the treatment of hypercholesterolemia based on an interruption of the enterohepatic circulation with specific transport inhibitors (Kramer, et al., “Intestinal Bile Acid Absorption”
The Journal of Biological Chemistry,
268 (24), 18035-46 1993).
In several individual patent applications, Hoechst Aktiengesellschaft discloses polymers of various naturally occurring constituents of the enterohepatic circulation system and their derivatives, including bile acid, which inhibit the physiological bile acid transport with the goal of reducing the LDL cholesterol level sufficiently to be effective as pharmaceuticals and, in particular for use as hypocholesterolemic agents. The individual Hoechst patent applications which disclose such bile acid transport inhibiting compounds are each separately listed below.
R1. Canadian Patent Application No. 2,025,294.
R2. Canadian Patent Application No. 2,078,588.
R3. Canadian Patent Application No. 2,085,782.
R4. Canadian Patent Application No. 2,085,830.
R5. EP Application No. 0 379 161.
R6. EP Application No. 0 549 967.
R7. EP Application No. 0 559 064.
R8. EP Application No. 0 563 731.
Selected benzothiepines are disclosed in world patent application number WO 93/321146 for numerous uses including fatty acid metabolism and coronary vascular diseases.
Other selected benzothiepines are known for use as hypolipaemic and hypocholesterolaemic agents, especially for the treatment or prevention of atherosclerosis as disclosed in application No. EP 508425. A French patent application, FR 2661676 discloses additional benzothiepines for use as hypolipaemic and hypocholesterolaemic agents. Furthermore, patent application no. WO 92/18462 lists other benzothiepines for use as hypolipaemic and hypocholesterolaemic agents. U.S. Pat. No. 5,994,391 (Lee et al.) Each of the benzothiepine hypolipaemic and hypocholesterolaemic agents described in these individual patent applications is limited by an amide bonded to the carbon adjacent the phenyl ring of the fused bicyclobenzothiepine ring.
Further benzothiepines useful for the treatment of hypercholesterolemia and hyperlipidemia are disclosed in patent application no. PCT/US95/10863. More benzothiepines useful for the prophylaxis and treatment of hypercholesterolemia and hyperlipidemia as well as pharmaceutical compositions of such benzothiepines are described in PCT/US97/04076. Still further benzothiepines and compositions thereof useful for the prophylaxis and treatment of hypercholesterolemia and hyperlipidemia are described in U.S. Application Ser. No. 08/816,065.
In vitro bile acid transport inhibition is disclosed to correlate with hypolipidemic activity in The Wellcome Foundation Limited disclosure of the patent application No. WO 92/16055 for “Hypolipidemic Benzothiazepine Compounds.” That publication describes a number of hypolipidemic benzothiazepine compounds. Additional hypolipidemic benzothiazepine compounds (particularly 2,3,4,5-tetrahydrobenzo-1-thi-4-azepine compounds) are disclosed in patent application No. WO 96/05188. A particularly useful benzothiazepine disclosed in WO 96/05188 is the compound of formula B-2. Further hypolipidemic benzothiazepine compounds are described in patent application No. WO 96/16051.
(3R,5R)-3-butyl-3-ethyl-2,3,4,5-tetrahydro-,7,8-dimethoxy-5-phenyl-1-4-benzothiazepine 1,1-dioxide
Other benzothiazepine compounds useful for control of cholesterol are described in PCT Patent Application No. WO 99/35135. Included in that description is the compound of formula B-7.
Further IBAT inhibitor compounds include a class of naphthalene compounds, described by T. Ichihashi et al. in
J. Pharmacol. Exp. Ther.,
284(1), 43-50 (1998). In this class, S-8921 (methyl 1-(3,4-dimethoxyphenyl)-3-(3-ethylvaleryl)-4-hydroxy-6,7,8-trimethoxy-2-naphthoate) is particularly useful. The structure of S-8921 is shown in formula B-20. Further naphthalene compounds or lignin derivatives useful for the treatment or prophylaxis of hyperlipidemia or atherosclerosis are described in PCT Patent Application No. WO 94/24087.
Inhibition of cholesteryl ester transfer protein (CETP) has been shown to effectively modify plasma HDL/LDL ratios, and is expected to check the progress and/or formation of certain cardiovascular diseases. CETP is a plasma protein that facilitates the movement of cholesteryl esters and triglycerides between the various lipoproteins in the blood (Tall,
J. Lipid Res.,
34, 1255-74 (1993)). The movement of cholesteryl ester from HDL to LDL by CETP has the effect of lowering HDL cholesterol. It therefore follows that inhibition of CETP should lead to elevation of plasma HDL cholesterol and lowering of plasma LDL cholesterol, thereby providing a therapeutically beneficial plasma lipid profile. Evidence of this effect is described in McCarthy,
Medicinal Res. Revs.,
13, 139-59 (1993). Further evidence of this effect is described in Sitori,
Pharmac. Ther.,
67, 443-47 (1995)). This phenomenon was first demonstrated by Swenson et al., (
J. Biol. Chem.,
264, 14318 (1989)) with the use of a monoclonal antibody that specifically inhibits CETP. In rabbits, the antibody caused an elevation of the plasma HDL cholesterol and a decrease in LDL cholesterol. Son et al. (
Biochim. Biophys. Acta,
795, 743-480 (1984)) describe proteins from human p
Connolly Daniel T.
Glenn Kevin C.
Keller Bradley T.
Schuh Joseph R.
Sikorski James A.
Banner & Witcoff , Ltd.
G. D. Searle, LLC
Nguyen Helen
Webman Edward J.
LandOfFree
Combinations of ileal bile acid transport inhibitors and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Combinations of ileal bile acid transport inhibitors and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Combinations of ileal bile acid transport inhibitors and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2958984