Combination plastic spiral forming machine and...

Bookbinding: process and apparatus – Apparatus – Edge binding apparatus

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C140S092400, C140S092940, C140S092900, C140S07100R, C412S009000, C412S038000, C412S039000, C425S143000, C425S160000, C425S509000

Reexamination Certificate

active

06547502

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to a combination book binding machine with a plastic coil forming machine, whereby a plastic spiral coil is formed at a first raised temperature, then cut to a length sufficient for the plastic coil to bind a book, cooled and then advanced toward a receiving coil conveyor of a coil binding machine, for binding the book with a plastic coil formed at the lowered cooled temperature.
BACKGROUND OF THE INVENTION
While most of the prior art in the field of spiral binding apparatus relates to the use of metallic wire spirals, two patents specifically relate to the use of plastic spirals. U.S. Pat. No. 2,638,609 of Penner describes a machine for binding books with special features for aligning the perforations of a sheaf of papers to be bound and to confine the travel of the plastic spiral binding material. U.S. Pat. No. 4,249,278 of Pfaffle describes a machine for spiral binding which feeds plastic thread from a bulk spool, softens the thread, winds it on a mandrel to form a spiral, cools it to harden and then feeds the rigid spiral into a perforated sheet group.
Pfaffle '278 integrates the process of the forming of plastic spiral binding coils from plastic thread with that of a binding machine to produce an end product of spiral bound books. Plastic thread is pulled from a spool, preheated, wound around a mandrel in a heated zone, continuously fed into a cooling sleeve for rapid cooling by exposure to a blast of cold air generated by a vortex cooler and then the spiral is fed into the binding machine. However, in Pfaffle '278 the plastic coil material of polyvinyl-chloride (PVC) can become brittle by the rapid cooling, since it develops voids in its interior. The resulting spiral coil is too brittle to process in a book binding machine since the ends are broken off during the bending process or in early use of the bound books by the ultimate consumer.
Other patents relating to spiral binding machines include U.S. Pat. No. 4,378,822 of Morris which describes a spiral binding machine with a drive component. However, the mandrel of Morris '822 is fixed, not laterally adjustable as in the present invention, and the mandrel of Morris '822 has a closed end, which requires pre-feeding of the spiral thereon.
OBJECTS OF THE INVENTION
It is an object of this invention to provide a combination plastic spiral coil forming machine that can also accurately insert the plastic spiral coils into a book for binding.
It is yet another object of this invention to provide a spiral bound book with a durable, non-brittle plastic spiral coil.
It further an object of the present invention to provide a transfer conveyor which advances hot, recently formed plastic spiral coils from a forming machine to a spiral insertion machine while cooling the plastic spiral coils.
It is yet another object of this invention to provide an advancement means for accurately transporting a formed plastic spiral coil to its proper position for insertion into the first spiral insertion hole of the book.
It is another object of this invention to be able to quickly cool a formed plastic spiral coil into a solid, flexible state for insertion into spiral insertion holes of a book.
It is another object of this invention to provide a semi-automatic machine of low cost and reliable operation.
It is yet another object of this invention to improve over the disadvantages of the prior art.
SUMMARY OF THE INVENTION
In keeping with the objects of the present invention and others which may become apparent, the present invention provides a process for binding books which includes the steps of forming a plastic coil using a plastic spiral forming machine, cooling the plastic coil and inserting the cooled, formed plastic coil into a spiral bindery machine that inserts the cooled, formed coil to bind a book.
After the plastic coil is formed, it is cut and advanced upon a conveyor belt having a plurality of compartments, each holding formed plastic coils. Each of these coils are separately ejected onto each respective compartment, of the plurality of compartments located on the conveyor belt, which is sequentially advanced to expose another compartment of the plurality of compartments on the conveyor belt for the next, formed coil.
While other methods of cooling may be applied to the hot, formed plastic coils, the coils may be cooled by being advanced on the conveyor at a speed sufficient for the temperature of the plastic coil to lower. The advancement of each cooled plastic coil is toward a receiving coil conveyor of the coil binding machine. Then the book is bound with insertion of the lowered temperature plastic coil into the series of edge holes in the book.
While other configurations for the coil advancing conveyor may be used, preferably the linkage conveyor which conveys the plastic coils is a wide belt supported by a stationary horizontal platen, wherein the wide belt has a rigid chain construction with a plurality of fins attached thereto.
A drive pulley communicates with and advances the wide belt and the plurality of fins form the group of separate compartments, which allow the placement of plastic coils therein. For power, a gear motor is electrically connected to a drive pulley. In addition, a motor speed controller is electrically connected to a gear motor, so that the motor speed controller causes the drive pulley to intermittently rotate, thereby intermittently advancing each plastic coil on the belt towards the coil binding machine.
The basic operational concept of the coil insertion portion of the present invention is to use an adjustable speed drive to rotate a spiral coil for a spiral bound book at optimum speed for the diameter of a particular spiral as well as the thickness of the book being bound. This, along with a smooth mandrel with a spiral stabilizing spring, controls the proper feeding of the spiral without the necessity for expensive machined parts to confine the spiral to prevent its distortion.
After the cooled plastic coil is advanced upon the conveyor, the binding machine portion of the present invention spirally binds a sheaf of papers into a book. It clamps together the sheaf of papers making up the book, which book has a plurality of holes in a row adjacent to one edge of the book, to receive the leading edge of the spiral binding element. The machine includes a stationary base which is from one end of the book, and a block slidably mounted on the base, which has an arm extending outwardly.
The arm supports at its distal end thereof a cylindrically shaped mandrel, which is spaced from the slidable block and the bottom edge of the mandrel horizontally in a line corresponding with the row of holes in the book. The arm is attached at its distal end to the mandrel at the proximate end of the mandrel, which faces the row of holes and is spaced apart from the book. The arm is attached to the block at the proximate end, to adjust the distance between the mandrel and the block.
After being advanced on the cooling conveyor, a feeding mechanism feeds the cooled plastic, pre-formed, spiral binding coil element onto the mandrel, from the distal end thereof, which spiral binding element terminates at the proximate end of the mandrel. The leading edge of the binding element faces, and is spaced apart from the book. The internal diameter of the spiral binding element is slightly in excess in size of the outer diameter of the mandrel.
A spring is mounted on the slidable block to engage and to adjustably bias the cooled spiral binding coil on the mandrel upwardly, against the mandrel, so that the upper portion of the binding element is spaced apart from the top of the mandrel.
A wheel, having an outer frictional surface, engages a top outer surface of the cooled spiral binding coil and a motor drives the wheel, to feed the cooled spiral binding coil into the row of holes in the book, for binding the book.
An adjusting mechanism adjusts the position of the block on the base, positioning the mandrel, to obtain proper alignment of the leading edge of the spiral bin

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Combination plastic spiral forming machine and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Combination plastic spiral forming machine and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Combination plastic spiral forming machine and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3095434

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.