Electrical connectors – Connector movable between accessible and inaccessible positions
Reexamination Certificate
2000-01-20
2002-07-16
Sircus, Brian (Department: 2839)
Electrical connectors
Connector movable between accessible and inaccessible positions
C343S702000
Reexamination Certificate
active
06419506
ABSTRACT:
THE FIELD OF THE INVENTION
The present invention relates to small scale antennas embodied in physical/electrical media connectors used in the computer and communications industry. More particularly, the present invention relates to an antenna which can be constructed as part of a thin profile physical/electrical media connector. This type of antenna is useful in combination electronic devices which utilize both wireless and wired communications networks.
BACKGROUND
Some standards in the electrical connector industry have been created by government regulation such as the Federal Communications Commission's Title 47, §68.500, otherwise denoted “Subpart F—Connectors” (Subpart F). Subpart F is incorporated herein by reference. Subpart F contains detailed specifications for “miniature” connectors used in the communications industry. Included in this specification are the “Miniature 6-position plug and jack” and the “Miniature 8-position plug and jack.” These connectors, commonly known as the RJ-11 connector and the RJ-45 connectors, respectively, are ubiquitous throughout the industry.
The miniature 6-position connector or RJ-11 has emerged as the industry standard connector for telephone lines. RJ-11 plugs and jacks are used on almost all telephone sets for connection to the phone system and consequently are used for standard modem connections which also use these telephone lines. Although most telephone companies use only 4 or 2 of the available positions on the connector, the 6-position connector is the standard.
The miniature 8-position connector or RJ-45 has become an industry standard connector for computer networks. It is used for inter-connectivity between network adapter cards, hubs, routers, switches and other network hardware.
These connectors have been the industry standard for many years and are likely to remain so in the future for telephones, desktop computer modems and network adapters, and other substantially stationary communications equipment. However, hardware technology and the “miniaturization” of components has progressed to the point that the standard, “miniature” RJ connectors have a larger cross-section than the thickness of the hardware to which they connect.
An example of these smaller, thin profile hardware configurations is the PC Card Standard promulgated by the Personal Computer Memory Card International Association (PCMCIA). The PCMCIA PC Card standard identifies three primary card type designations: Type I, II and III. These type designations correspond to physical dimension restrictions or “form factors” of 85.6 mm (length)×54.0 mm (width) and thicknesses of 3.3 mm, 5.0 mm and 10.5 mm respectively. These thin profile expansion cards are used to expand the functionality of computers and related products by adding circuitry contained on the card to the host device. Host devices, such as laptop computers, contain expansion slots which receive the expansion cards and provide electrical connections thereto. Modems and network adapters are often constructed in PC Card standard form factor.
As a consequence of hardware miniaturization in the face of a nearly worldwide RJ connector standard, hardware manufacturers have developed myriad proprietary hardware connection standards and an assortment of connectors and adapters that allow the RJ plugs to be connected to thin profile hardware.
One elegant and convenient connector which allows connection of the standard RJ type plug with thin profile hardware is the XJACK® produced by 3Com Corporation, Salt Lake City, Utah. The XJACK®, shown generally in
FIG. 1
, is a thin profile connector designed to be contained within hardware such as PC Card standard compliant devices. The XJACK® comprises a thin body
1
with an aperture
3
therein for receiving a standard RJ connector plug
5
such as a miniature 6-pin plug, a miniature 8-pin plug or some other connector. Jack conductors
7
contact plug conductors
9
just as a conventional RJ jack connects. The XJACK® may be retractable within the device or be detachable therefrom. Commonly used XJACK® connectors retract in and out of a device by sliding along a track. A spring is often used to bias the XJACK® connector such that it pops out of its retracted state and remains extended during use.
Wireless communication devices are now becoming commonplace in the electronics industry. Wireless networking of portable computers and associated devices is now replacing a large segment of the networking market. Wireless communication devices including wireless networking adapters, hubs and other equipment utilize radio transmitters and receivers to transmit data signals from one device or node to another. These radio transmitters and receivers must utilize a specific frequency band and protocol to accomplish this task. Since these wireless networks and communications areas may often overlap, standards, protocols and privacy protection are necessary. One current standard in the industry has been established by the Institute of Electrical and Electronics Engineers, Inc. (IEEE) and is known as IEEE 802.11. This standard comprises communications standards, protocol and equipment specifications for wireless communication equipment including privacy and encryption provisions.
Another emerging standard in wireless communications and networking, known as Bluetooth®, is being established by a collaborative group of communications and computing companies. Devices incorporating Bluetooth® technology will utilize a micro-chip transceiver for communications between devices. Bluetooth® devices will transmit in the previously unused 2.4 GHz range. Bluetooth® technology promises to be a viable and economical networking solution for interconnection of cell phones, computers, printers, modems, computer peripherals, fax machines and other communications and computing devices. The size of the Bluetooth® transceiver will make it usable in devices as small as palm computers and cell phones.
Antennas are well known for enabling and improving transmission to radio receivers and from radio transmitters. Antennas can dramatically increase the range of radio transceivers, however most antenna designs function best when protruding from their host device. In small electronic devices protruding antennas are often vulnerable to breakage as the devices are often stowed in purses, pockets, backpacks and other areas where neglect can occur. A retractable antenna is more convenient and durable and occupies less space when retracted.
Conventionally retractable antennas often occupy too much space to be combined with other physical/electrical media connectors in a thin profile device or expansion card. The limited space in these devices often precludes the combination of wireless elements with antennas and other wired devices which require cable connectors.
While wireless technology is fast replacing a large segment of the communications and networking industry, wired equipment is still prevalent. A communications or computing device, such as a portable computer, which can connect to both wireless and conventionally wired networks will be more adaptable and convenient at the present time. A device or expansion card which provides connectivity to both wired and wireless technology is extremely useful.
SUMMARY AND OBJECTS OF THE INVENTION
The present invention relates to antennas which are physically combined with standard cable connectors on electronic devices. Many electronic apparatus comprise physical/electrical media connectors which are used to connect to communications networks such as telephone networks or computer networks. This is often done by connecting a telephone or network cable to the connector on the apparatus. Some apparatus of the present invention comprises an antenna physically combined with a retractable, thin profile cable connector.
Wireless communications devices are becoming extremely common especially in the fields of telephone communications and computer network communications. Wireless local area networks (LAN's) and even wide area networks (WAN's) are now widespr
Andrus David
Jones Jeffrey L.
Oliphant David
Prestwich Sy
3Com Corporation
Le Thanh-Tam
LandOfFree
Combination miniature cable connector and antenna does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Combination miniature cable connector and antenna, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Combination miniature cable connector and antenna will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2819892