Electrical generator or motor structure – Dynamoelectric – Rotary
Patent
1982-04-14
1984-01-03
Miller, J. D.
Electrical generator or motor structure
Dynamoelectric
Rotary
307 16, 310131, H02K 2350
Patent
active
044244649
DESCRIPTION:
BRIEF SUMMARY
DESCRIPTION
1. Technical Field
This invention relates to a charging generator which is obtained by adding an AC power supplying function to a conventional charging generator which is adapted to supply a DC power to a battery on a vehicle or to a plurality of electrical equipments.
2. Background Art
FIG. 1 is a sectional view of an ordinary charging generator. In FIG. 1, reference numeral 1 designates a rotor which comprises confronted magnetic poles 2, namely, N and S poles arranged alternately and circumferentially, a field winding 3A for magnetizing the confronted magnetic poles 2, and a field core 4 which is arranged inside of the field winding 3A and on which the field winding 3A is wound. A rotary shaft 5 on which the rotor 1 is fixedly mounted is supported by bearings 6 and 7 at both ends. A pair of slip rings 8 are fixed to the rotary shaft 5 and are connected to the field winding 3A. A pair of brushes 9 are slidably in contact with the pair of brushes 8; 10, a brush holder for holds the slip rings 9; stator 11 comprises an armature core 11a which is confronted through a small gap with the confronted magnetic poles 2, and an armature winding 11b which is wound on the armature core 11a in three-phase and star connection. A rectifier device 12 subjects an AC output generated in the armature winding 11b to full-wave rectification; fan 13 together with a pulley 15 is fixedly secured to the rotary shaft 5 with a nut 14; front bracket 16 supports the above-described bearing 6 and one end portion of the above-described stator 11; rear bracket 17 holds the above-described bearing 7, the other end portion of the stator 11, the brush holder 10 and the rectifier device 12 are mounted; voltage regulator 18, accommodated in a box 10a, is integral with the brush holder 10 and is provided on the back of the brush holder 10; DC output terminal 19 is connected to the rectifier device 12.
When the charging generator 20 thus constructed is installed on a vehicle, the electrical wiring is as shown in FIG. 2. In FIG. 2, an auxiliary rectifier device 21 supplies an exciting current to the field winding 3; 22 is an exciting terminal through which an initial exciting current flows; 23 is a charging indication lamp; 24, an initial exciting resistor connected in parallel to the charging indication lamp 23; 25, a key switch; 26, a battery; and 27, a DC load such as a DC motor or a lamp.
The operation of the charging generator thus arranged will be described.
When the key switch 25 is closed, an exciting current is supplied from the battery 26 through the charging indication lamp 23 and the initial exciting resistor 24 to the field winding 3A. In this operation, the charging indication lamp 23 is turned on to indicate a non-charging state, i.e., the fact that the exciting current is being supplied to the field winding 3A from the battery 26. On the other hand, when the engine of the vehicle (not shown) is started, the rotor 1 is driven through the pulley 15 by the belt. Therefore, a rotating magnetic field is developed, and a predetermined AC output is developed in the armature winding 11b. The AC output is converted into a DC output by being subjected to full-wave rectification in the rectifier device 12. When the speed of the engine is increased to raise the voltage at the initial exciting terminal 22 to the voltage of the battery 26, no current flows in the charging indication lamp 23 and the initial exciting resistor 24. Thus, the charging indication lamp 23 indicates the fact that the charging generator 20 has been excited. Thereafter, the exciting current is supplied through the auxiliary rectifier device 21 from the armature winding 11b. When the speed of the engine is further increased, the DC output is supplied through the DC output terminal to the battery 26 on the vehicle and to the DC load such as a DC motor or a lamp. The voltage regulator 18 operates to maintain the voltage at the DC output terminal 19 at a predetermined value by turning on and off the exciting current which is supplied to the field winding 3.
A
REFERENCES:
patent: 1958650 (1934-05-01), Walton
patent: 2939975 (1960-06-01), Richards
patent: 3267353 (1966-08-01), Franklin
patent: 3577002 (1971-05-01), Hall et al.
patent: 4162419 (1979-07-01), DeAngelis
Miller J. D.
Mitsubishi Denki & Kabushiki Kaisha
Rebsch D. L.
LandOfFree
Combination DC/AC generator for automotive vehicles does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Combination DC/AC generator for automotive vehicles, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Combination DC/AC generator for automotive vehicles will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-1033454