Colored cellulosic casing with clear corridor

Stock material or miscellaneous articles – Hollow or container type article – Flexible food casing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S035200, C428S036400, C428S036900, C428S195100, C426S105000, C426S129000, C138S118100

Reexamination Certificate

active

06183826

ABSTRACT:

The present invention relates to cellulosic food casings, such as sausage casings and the optical properties and visual appearance thereof.
Food casings used in the processed food industry are generally thin-walled tubing of various diameters prepared from regenerated cellulose, cellulose derivatives, and the like.
In general, cellulosic food casings have multifunctional uses in that they may be employed as containers during the processing of the food product encased therein and also serve as a protective wrapping for the finished product. In the sausage meat industry, the preparation of various types of sausages such as frankfurters in a variety of sizes usually involves removing the casing from about the processed meat prior to final packaging. These sausages from which casing is usually removed are generally processed in nonfiber-reinforced (nonfibrous) cellulose casing. However, larger diameter sausages such as salami are frequently sold with the casing left on. These sausages are usually packaged in fiber-reinforced (fibrous) cellulosic casing.
In the manufacture of nonfibrous regenerated cellulose sausage casings, viscose is typically extruded through an annular die into a coagulating and regenerating bath to produce a tube of regenerated cellulose. This tube is subsequently washed, plasticized e.g. with glycerine, and dried e.g. by inflation under substantial air pressure. After drying, the casing is wound on reels and subsequently shirred on high-speed shirring machines, such as those described in U.S. Pat. Nos. 2,984,574, 3,451,827 3,454,981; 3,454,982; 3,461,484; 3,988,804 and 4,818,551. In the shirring process, lengths of from about 40 to about 200 feet of casing are typically compacted (shirred) into tubular sticks of between about 4 and about 30 inches. The shirred casing sticks are packaged and provided to the meat processor who typically causes the casing sticks to be deshirred at extremely high speeds while stuffing the deshirred casing with a meat emulsion. The meat can be subsequently cooked and the casing removed from the meat processed therein with high-speed peeling machines.
For fibrous casing, a process of manufacture similar to that for nonfibrous casing is employed, however, the viscose is extruded onto one or both sides of a tube which is usually formed by folding a web of paper so that the opposing side edges overlap. In production of fibrous casing the viscose impregnates the paper tube where it is coagulated and regenerated to produce a fiber-reinforced tube of regenerated cellulose. The fibrous or paper reinforcement is generally utilized in tubular casing having diameters of about 40 mm or more in order to provide dimensional stability particularly during stuffing with meat emulsion. Production of both nonfibrous and fibrous casing is well-known in the art and the present invention may utilize such well known processes.
Cellulosic casings are typically humidified to a level sufficient to allow the casing to be shirred without undue breakage from brittleness yet humidification must be at a level low enough to prevent undue sticking of the casing to the shirring equipment e.g. the mandrel during the shirring operation. Often a humectant is employed to moderate moisture retention and casing swelling to produce a casing which during the shirring operation has sufficient flexibility without undue swelling or stickiness. Typically, a lubricant such as an oil will also be used to facilitate passage of the casing through the shirring equipment e.g. over a shirring mandrel.
It has been useful to lubricate and internally humidify cellulose casings during the shirring process by spraying a mist of water and a lubricant through the shirring mandrel. This is an economical, fast and convenient way to lubricate and/or humidify the casing to increase the flexibility of the casing and facilitate high speed shirring without undue detrimental sticking, tearing or breakage of the casing.
Cellulosic food casings suitable for use in the present invention will have a moisture content of less than about 100 wt. % based upon the weight of bone dry cellulose (BDC). The term “bone dry cellulose” as used herein refers to cellulose such as regenerated cellulose and/or paper which has been dried by heating the cellulose in a convection oven at 160° C. for one hour to remove water moisture. In the formation of cellulosic casing e.g. by the viscose process, regenerated cellulose forms what is known as gel stock casing having a high moisture content in excess of 100 wt. % BDC. This gel stock casing is unsuitable for stuffing with food such as meat emulsion, e.g. to form sausages, because it has insufficient strength to maintain control of stuffing diameter and prevent casing failure due to bursting while under normal stuffing pressure. Gel stock casing is typically dried to a moisture level well below 100 wt. % (BDC) which causes the regenerated cellulose to become more dense with increased intermolecular bonding (increased hydrogen bonding). The moisture level of this dried casing may be adjusted, e.g. by remoisturization, to facilitate stuffing. Such remoisturization or moisture adjustment, e.g. by drying to a specific level, for nonfibrous casing is typically to a level with a range of from about 5 to about 40 wt. % BDC. Small diameter nonfibrous casing, prior to shirring, will have a typical moisture content of about 10-20 wt. % BDC, and such small diameter nonfibrous casing when shirred will have a moisture content that has been adjusted to between about 20 to 40 wt. % BDC.
For fibrous casing, casing is commercially produced having a moisture content ranging from about 4 wt. % BDC to about 70 wt. % BDC. Typically, fiber-reinforced casing having a moisture level between about 4 to about 25 wt. % BDC will be soaked prior to stuffing by a food processor. Premoisturized, ready-to-stuff, fibrous casing is also commercialized. Premoisturized fibrous casing which does not require additional soaking or moisturization will typically have a moisture content of from about 26 to about 70 wt. % BDC.
In the formation of skinless (casing removed) frankfurters, sausage proteins coagulate, particularly at the sausage surface, to produce a skin and allow formation of a liquid layer between this formed skin and the casing as described in U.S. Pat. No. 1,631,723 (Freund). In the art the term “skinless frankfurter” is understood to mean that the casing is or is intended to be removed and that such casing may be removed because of formation of a secondary “skin” of coagulated proteins on the surface of the frankfurter. This secondary skin forms the outer surface of the so called “skinless frankfurters”. Skin formation is known to be produced by various means including the traditional smoke curing with gaseous smoke, low temperature drying, application of acids such as citric acid, acetic acid or acidic liquid smoke or combinations thereof. Desirably, this secondary skin will be smooth and cover the surface of the frankfurter. Formation of a liquid layer between the casing and the frankfurter skin relates to the meat emulsion formulation, percent relative humidity during the cooking environment, subsequent showering and steam application to the chilled frankfurter.
During the traditional smoke curing process, the outer surface of the frankfurter will be colored by interaction with the gaseous smoke. This coloration is visually perceptible. When a processor uses a typical clear casing which is made from the viscose process without addition of pigments for coloration, then this smoke coloration of the frankfurter surface may be seen through the casing. In this manner, the curing and coloration of gaseous smoked sausages may be followed by observing through the casing visual changes, such as the increased darkening or browning of the sausage surface, which take place during smoking. Similarly, pink or red color development caused e.g. by contact with acid such as by acid showering may be seen through clear casing as may development of smoke coloration utilizing liquid smoke treated casing. Operator

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Colored cellulosic casing with clear corridor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Colored cellulosic casing with clear corridor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Colored cellulosic casing with clear corridor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2596064

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.