Colorants made from reactive dyes and fatty amines

Bleaching and dyeing; fluid treatment and chemical modification – Reactive dye composition – process – or product

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C008S544000, C008S546000, C008S548000, C008S547000, C008S549000, C008S654000, C008S655000, C008S657000, C008S658000, C008S659000, C008S661000, C008S662000, C008S602000, C008S675000, C008S677000, C008S685000, C008S686000, C008S597000, C008S521000

Reexamination Certificate

active

06287348

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to colorants comprising organic chromophores, in particular reactive dyes, which comprise electrophilic reactive groups, and which are also covalently bonded to fatty amine moieties through amino linking groups. Such chemically modified colorants provide excellent colorability, particularly within hydrocarbon compositions, such as fuels, mineral oil, and the like, and wax compositions, including candles, crayons, and the like. Methods of making such colorants as well as methods of coloring hydrocarbon and wax compositions are also contemplated within this invention.
DISCUSSION OF THE PRIOR ART
All U.S. and foreign patents cited within this specification are hereby incorporated by reference.
Reactive dyes generally provide effective and desirable colorations to different substrates and within different media. However, such dyes cannot color substrates and media in which they are not soluble. For example, standard reactive dyes do not exhibit any solubility within hydrocarbons, such as fuels, oils, and the like, or waxes, such as paraffin, beeswax, and the like. Thus, some type modification of reactive dyes is needed initially to provide such required solubility and ultimately to permit desirable colorations within hydrocarbons and waxes.
There are no prior teachings which disclose such modifications to reactive dyes to increase the solubility of such reactive dyes within hydrocarbon and wax media. There are previous disclosures regarding the addition of polyoxyalkylene chains to reactive dyes, including U.S. Pat. No. 4,634,555, to Baxter et al., U.S. Pat. No. 4,703,113, to Baxter et al., U.S. Pat. No. 4,726,844, to Greenwood et al., U.S. Pat. No. 4,738,721, to Baxter et al., U.S. Pat. No. 4,777,248, to Baxter et al., as well as EP-A 0176195, to Baxter et al., and EP-A 0187520, to Greenwood. Each of these patents is assigned to Imperial Chemical Incorporated (ICI) and merely teaches the addition of polyoxyalkylene chains to reactive dyes for further introduction within printing ink formulations. Furthermore, again there is no discussion within these references about the modification of the reactive dye backbone to improve solubility within hydrocarbons or waxes. Thus, a need remains for facilitating the introduction of reactive dyes within hydrocarbons and waxes in order to obtain desired colorations of such media since the prior art has not accorded such an improvement to that industry.
DESCRIPTION OF THE INVENTION
It is thus an object of the invention to provide modified reactive dyes which exhibit high degrees of solubility and excellent colorability within hydrocarbon compositions and wax formulations. A further object of the invention is to provide a relatively inexpensive, improved, stable colorant based on reactive dye technology which improves the versatility of such desirable colorants. Yet another object of this invention is to provide a process for making such modified reactive dyes, as well as methods of using such improved colorants.
The present invention provides fatty amine-substituted reactive dye as colorants which are compatible with polar solvents, such as water and methanol. Furthermore, the inventive colorants are readily soluble, if in particulate form, or miscible, if in liquid form, with hydrocarbons and waxes. Such solubility and miscibility provide a distinct advantage over traditional reactive dyes which are generally highly insoluble in such media. Thus, the inventive colorants can be utilized in applications where standard reactive dyes were inoperable in the past. The inventive colorants can be utilized over a wide pH range and are compatible with fragrances and preservatives, as merely examples, without complexing or destabilizing the resultant mixture. These colorants are also compatible with most cationic, anionic, non-ionic, and quaternary systems. Lastly, since the inventive colorants produce true solutions and not emulsions nor dispersions, the formulations made therefrom are homogeneous, clear, and brilliant in appearance.
Accordingly, this invention includes a colorant compound as defined by the formula (I)
A-B-X;  (I)
wherein, A-B is a reactive dye, wherein A is an organic chromophore, B is an electrophilic reactive group covalently bonded to A directly or through a linking group, and X is a fatty amine covalently linked to B through an amino linkage. Preferably X is a primary or secondary, branched or linear C
12
-C
24
alkylamine or C
12
-C
24
etheramine, most preferably a C
18
-C
22
alkylamines or C
18
-C
22
etheramine. The group A is a chromophore such as azo, phthalocyanine, anthraquinone, aza[18]annulene, formazan copper complex, triphenodioxazine, nitroso, nitro, diarylmethane, triarylmethane, xanthene, acridene, methine, thiazole, indamine, azine, oxazine, thiazine, quinoline, indigoid, indophenol, lactone, aminoketone, hydroxyketone, and stilbene. The group B is an electrophilic functional group such as monohalotriazole, dihalotriazole, monohalopyrimidine, dihalopyrimidine, trihalopyrimidine, dihaloquinoxaline, dihalopyrazone, dihalophthalazine, halobenzothiazole, mono-(m-carboxypyridinium)-triazine, amino epoxide, methylamino, sulfatoethyl sulfone, sulfatoethyl sulfonamide, chloroethyl sulfone, vinyl sulfone, phenylamino sulfone, acrylamide, alpha-haloacryloylamide, alpha, beta-dihalopropionyl amide, halosulfonyl pyrimidine, sulfatoethylamino sulfone, sulfatopropionamide, halosulfatothiazinylamide, and haloacetylamide. Preferably A is azo, phthalocyanine, or anthraquinone and B is monochlorotriazine, monofluorotriazine, dichlorotriazine, sulfatoethyl sulfone, vinyl sulfone, 2,3-dichloroquinoxaline, or 2,4-difluor-5-chloropyrimidine. For example, the reactive dye formed by the combination of A and B (A-B as noted above) can be C.I. Reactive Black 5, C.I. Reactive Blue 2, C.I. Reactive Blue 4, C.I. Reactive Blue 7, C.I. Reactive Blue 9, C.I. Reactive Blue 15, C.I. Reactive Blue 19, C.I. Reactive Blue 27, C.I. Reactive Violet 3, C.I. Reactive Violet 5, C.I. Reactive Red 2, C.I. Reactive Red 24, C.I. Reactive Orange 4, C.I. Reactive Orange 13, C.I. Reactive Orange 16, C.I. Reactive Orange 78, C.I. Reactive Yellow 3, C.I. Reactive Yellow 13, C.I. Reactive Yellow 14, C.I. Reactive Yellow 17, or C.I. Reactive Yellow 95.
The term hydrocarbon is intended to encompass any organic composition comprised primarily of carbon and hydrogen in which reactive dyes are substantially insoluble. More specifically, hydrocarbon is intended to encompass fuels (such as kerosene), mineral spirits, oils, diluents, solvents, and any other such hydrogen and carbon-containing organic compositions in which unmodified reactive dyes are substantially insoluble.
The term wax is intended to encompass any wax or wax-like substance in which unmodified reactive dyes are substantially insoluble. Waxes are generally defined as esters of high-molecular weight fatty acid with a high molecular weight alcohol or mixtures of any such esters. More specific types of such waxes include mineral waxes, such as paraffin, montan, ozokerite, microcrystalline, earth, and the like; animal waxes, such as beeswax, waspwax, Chinesewax (insectwax), and the like; vegetable waxes, such as carnauba, sugarcane wax, candelilla, flax wax, and the like; and synthetic waxes, such as Fischer-Tropsch wax, polyethylene wax, and the like. Wax compositions can be molded into different articles such as candles and crayons (with the addition of sufficient amounts of suitable plasticizers, such as stearic acid), ear plugs, and the like. The colorants are generally added in proportions of from about 0.005 to about 15.0% by weight of the wax media, preferably from about 0.01 to about 10.0%, more preferably from about 0.05 to about 5.0%, and most preferably from about 0.1 to about 3.0%.
Prior to utilization in any coloring method, the inventive colorants may be diluted with any suitable solvent. Such solvents include butyl carbitol, kerosene, prisorene, and the like. As a result, such solvents are initially colored, added to the molten wa

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Colorants made from reactive dyes and fatty amines does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Colorants made from reactive dyes and fatty amines, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Colorants made from reactive dyes and fatty amines will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2526374

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.