Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – At least one aryl ring which is part of a fused or bridged...
Reexamination Certificate
1999-12-01
2002-11-26
Cain, Edward J. (Department: 1714)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
At least one aryl ring which is part of a fused or bridged...
C428S333000, C428S338000, C428S339000, C523S210000, C524S446000, C524S447000
Reexamination Certificate
active
06486254
ABSTRACT:
FIELD OF THE INVENTION
This invention relates generally to a colorant composition and a polymer-clay nanocomposite having improved color and appearance comprising a colorant composition. This invention further relates to articles produced from the polymer-clay nanocomposite.
BACKGROUND OF THE INVENTION
There is much interest in polymer/clay nanocomposites because of the improved properties exhibited by the nanocomposites. For example, U.S. Pat. No. 4,739,007 discloses polyamide/clay nanocomposite materials containing clays intercalated with alkylammonium salts. Polymer/clay nanocomposites typically suffer from poor color and appearance due to the presence of the clay.
One objective of this invention is to provide clays intercalated with colorants and/or optical brighteners that mask the color of the clay and provide polymer/clay nanocomposites that are colorless, white, or slightly colored. It is also an object of this invention to provide clays intercalated with colorants that provide colored polymer/clay nanocomposites.
Colorants or pigments derived from the reaction of a cationic dye and a clay are known. For example, R. Fahn and K. Fenderl,
Clay Minerals,
18, 447-458 (1987) disclose pigments derived from montmorillonite clay intercalated with certain cationic dyes. However, incorporation of the pigments into thermoplastic polymer/clay nanocomposites, especially those with processing temperatures well above 200° C., is neither contemplated nor disclosed.
Therefore, a need still exists for a colorant composition, a polymer-clay nanocomposite comprising the colorant composition and articles produced from the polymer-clay nanocomposite that have improved color and/or appearance.
SUMMARY OF THE INVENTION
In accordance with the purpose(s) of this invention, as embodied and broadly described herein, this invention, in one embodiment, relates to a polymer-clay nanocomposite comprising (i) a melt-processible matrix polymer, and incorporated therein (ii) a colorant composition comprising a clay material intercalated with at least one cationic colorant having a cation group and a chromophore group.
In another embodiment, this invention relates to a polymer-clay nanocomposite comprising (i) a melt-processible matrix polymer, and incorporated therein (ii) an optical brightener composition comprising a clay material intercalated with at least one optical brightener having a cation group and a chromophore group.
In another embodiment, this invention relates to a colorant composition comprising (i) at least one cationic colorant having a cation group and a chromophore group, wherein the cation group is separated from the chromophore group by at least two carbons, and (ii) a clay material intercalated with the cationic colorant.
In yet another embodiment, this invention relates to a composition comprising (i) at least one optical brightener having a cation group and a chromophore group, wherein the cation group is separated from the chromophore group by at least two carbons, and (ii) a clay material intercalated with the optical brightener.
In yet another embodiment, the present invention relates to a process for preparing a polymer-clay nanocomposite comprising (i) preparing an intercalated layered clay material by reacting a swellable layered clay material with a cationic colorant, optical brightener, or a mixture thereof, and (ii) incorporating the intercalated clay material in a matrix polymer by melt processing the matrix polymer with the intercalated clay.
Additional advantages of the invention will be set forth in part in the detailed description, which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory of preferred embodiments of the invention, and are not restrictive of the invention, as claimed.
DETAILED DESCRIPTION OF THE INVENTION
The present invention may be understood more readily by reference to the following detailed description of the invention and the examples provided therein. It is to be understood that this invention is not limited to the specific processes and conditions described, as specific processes and/or process conditions for processing polymers as such may, of course, vary. It is also understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting.
It must also be noted that, as used in the specification and the appended claims, the singular forms “a,” “an” and “the” included plural references unless the context clearly dictates otherwise.
Ranges may be expressed herein as from “about” or “approximately” one particular value and/or to “about” or “approximately” another particular value. When such a range is expressed, another embodiment includes from the one particular and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another embodiment.
DEFINITIONS
Whenever used in this specification or the claims, the terms set forth shall have the following meanings:
“Colorant(s)” or “colorant composition(s)” shall mean any substance that imparts color to another material or mixture. Colorants are either dyes or pigments and may be naturally present in a material, admixed with a material or applied to it in solution. “Optical brightener(s)” or “fluorescent brightener(s)” shall mean any fluorescent organic compound that absorbs mainly UV light and emits it as visible light.
“Pigment(s)” shall mean any substance that imparts color to another material or mixture and is sometimes used synonymously with “colorant” or “dye.” Pigments are usually dry powders and may be organic or inorganic.
“Dye(s)” shall mean any natural or synthetic organic colorant, which may be either acidic or basic. The distinction between natural dyes and pigments is often arbitrary.
“Chromophore(s)” shall mean a chemical grouping that when present in an aromatic compound (the chromogen), gives color to the compound by causing a displacement of, or appearance of, absorbent bands in the visible spectrum.
“Clay(s),” “clay material(s),” “Layered clay(s)” or “layered clay material(s)” shall mean any organic or inorganic material or mixtures thereof, such as a smectite clay mineral, which is in the form of a plurality of adjacent, bound layers. The layered clay comprises platelet particles and is typically swellable.
“Platelet particles,” “platelets” or “particles” shall mean individual or aggregate unbound layers of the layered clay material. These layers may be in the form of individual platelet particles, ordered or disordered small aggregates of platelet particles (tactoids), and small aggregates of tactoids.
“Dispersion” or “dispersed” is a general term that refers to a variety of levels or degrees of separation of the platelet particles. The higher levels of dispersion include, but are not limited to, “intercalated” and “exfoliated.”
“Intercalated” or “intercalate(s)” shall mean a layered clay material that includes an intercalant, e.g. cationic colorant, disposed between adjacent platelet particles or tactoids of the layered material.
“Exfoliate” or “exfoliated” shall mean platelets dispersed predominantly in an individual state throughout a carrier material, such as a matrix polymer. Typically, “exfoliated” is used to denote the highest degree of separation of platelet particles.
“Exfoliation” shall mean a process for forming an exfoliate from an intercalated or otherwise less dispersed state of separation.
“Nanocomposite(s)” or “nanocomposite composition(s)” shall mean a polymer or copolymer having dispersed therein a plurality of individual platelets obtained from an exfoliated, layered and intercalated clay material.
“Matrix polymer” shall mean a thermopla
Barbee Robert Boyd
Matayabas, Jr. James Christopher
Weaver Max Allen
Cain Edward J.
University of South Carolina Research Foundation
LandOfFree
Colorant composition, a polymer nanocomposite comprising the... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Colorant composition, a polymer nanocomposite comprising the..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Colorant composition, a polymer nanocomposite comprising the... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2932026