Color-stabilized electrochromic devices

Optical: systems and elements – Optical modulator – Light wave temporal modulation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C359S273000, C359S275000, C252S583000

Reexamination Certificate

active

06735011

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates in general to electrochromic devices, and more particularly, to normally operating, color-stabilized electrochromic devices having an electrochromic medium comprising one or more additives, which serve to substantially preclude the formation of undesirable residual color within the electrochromic medium while in its high transmission state.
2. Background Art
Electrochromic devices have been known in the art for several years. While the utilization of electrochromic devices, such as electrochromic mirrors, has become increasing popular among, for example, the automotive industry, the development of undesirable residual color within the electrochromic medium remains problematic.
Indeed, when a sufficient electrical potential difference is applied across the electrodes of a conventional device, the electrochromic medium becomes intentionally colored (i e a low transmission state) inasmuch as one or more of the anodic and the cathodic materials are oxidized and reduced, respectively. Specifically, the anodic materials are oxidized by donating electrons to the anode, and the cathodic materials are reduced by accepting electrons from the cathode.
For most commercially available devices, when the electrical potential difference is removed or substantially diminished, the anodic and cathodic materials return to their native or unactivated state, and in turn, return the electrochromic medium to its colorless or nearly colorless state (i e a high transmission state). The application and removal of an electrical potential difference is conventionally known as a single cycle of the electrochromic device.
Scientists have observed that over a period of cycles and/or time, during normal operation of the electrochromic device, the electrochromic medium sometimes does not remain colorless in the high transmission state. In some instances, even in the absence of an electrical potential difference, either one or both of a portion of the anodic and cathodic materials are oxidized or reduced respectively, thereby forming residual oxidized and/or reduced materials. The residual oxidized anodic materials and/or the residual reduced cathodic materials of the electrochromic medium can result in an undesired residual coloration of the electrochromic medium
Factors that are believed to facilitate the formation of the undesired residual oxidized anodic and/or reduced cathodic materials include, among other things, impurities within the medium, thermal and/or photochemical decomposition of one or more of the medium materials, and/or the permeation of water and/or oxygen into the electrochromic medium.
It is therefore an object of the present invention to provide an electrochromic medium with a color-stabilizing additive that remedies the aforementioned detriments and/or complications associated with maintaining a colorless or nearly colorless electrochromic device while the device is in its high transmission state.
SUMMARY OF THE INVENTION
The present invention is directed to an electrochromic medium for use in a normally operating electrochromic device comprising (a) an anodic material and a cathodic material, wherein both of the anodic and cathodic materials are electroactive and at least one of the anodic and cathodic materials is electrochromic, and (b) an additive wherein the additive, is more easily reduced than the cathodic material.
In a preferred embodiment of the invention, the additive substantially precludes the formation of a residual reduced cathodic material while the electrochromic medium is in a high transmission state.
In another preferred embodiment of the invention, the additive comprises either an oxidized form of the anodic material or an additional material present in an oxidized form.
The present invention is also directed to an electrochromic medium for use in a normally operating electrochromic device comprising (a) an anodic material and a cathodic material, wherein both of the anodic and cathodic materials are electroactive and at least one of the anodic and cathodic materials is electrochromic, and (b) an additive, wherein the additive comprises a reduced form of the cathodic material.
The present invention is further directed to an electrochromic medium for use in a normally operating electrochromic device comprising (a) an anodic material and a cathodic material, wherein both of the anodic and cathodic materials are electroactive and at least one of the anodic and cathodic materials is electrochromic, and (b) an additive, wherein the additive is more easily oxidized than the anodic material, and wherein the additive is selected from the group comprising substituted ferrocenes, substituted ferrocenyl salts, and mixtures thereof.
The present invention is also directed to an electrochromic medium for use in a normally operating electrochromic device comprising (a) an anodic material and a cathodic material, wherein both of the anodic and cathodic materials are electroactive and at least one of the anodic and cathodic materials is electrochromic, and (b) an additive, wherein the additive comprises (1) a first component that is more easily reduced than the cathodic material and (2) a second component that is more easily oxidized than the anodic material.
In a preferred embodiment of the invention, the first component substantially precludes the formation of a residual reduced cathodic material and the second component substantially precludes the formation of a residual oxidized anodic material while the electrochromic medium is in a high transmission state.
In another preferred embodiment of the invention, the first component comprises either an oxidized form of the anodic material or an additional electroactive material present in an oxidized form.
The present invention is additionally directed to an electrochromic medium for use in a normally operating electrochromic device comprising (a) an anodic material and a cathodic material, wherein both of the anodic and cathodic materials are electroactive and at least one of the anodic and cathodic materials is electrochromic, (b) an additive, and (c) means associated with the additive for maintaining a colorless or nearly colorless electrochromic medium while such a medium is in a high transmission state relative to an electrochromic medium without the additive.


REFERENCES:
patent: 4933394 (1990-06-01), Foos
patent: 5724187 (1998-03-01), Varaprasad et al.
patent: 5910854 (1999-06-01), Varaprasad et al.
patent: 5998617 (1999-12-01), Srinivasa et al.
patent: 6001487 (1999-12-01), Ladang et al.
patent: 6141137 (2000-10-01), Byker et al.
patent: 6195192 (2001-02-01), Baumann et al.
patent: 6266177 (2001-07-01), Allemand et al.
patent: 6587251 (2003-07-01), Wang et al.
patent: 2001/0022357 (2001-09-01), Desarajui et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Color-stabilized electrochromic devices does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Color-stabilized electrochromic devices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Color-stabilized electrochromic devices will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3222350

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.