Color reproduction data converting method

Facsimile and static presentation processing – Natural color facsimile – Color correction

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C382S162000

Reexamination Certificate

active

06377366

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to a method of converting color reproduction data, and particularly to a method of automatically converting three-dimensional data representing calorimetric appearance into four-dimensional CMYK (or cyan (C), magenta (M), yellow (Y), and black (K)) color reproduction data used in printing or by a color printer. This method involves maintaining color matching conditions under arbitrary K plate conditions, and in this case, involves a method of determining the arbitrary amount of the K plate formation condition automatically.
In the field of printing, a printed area is usually represented by an area modulation of a halftone percentage of CMYK. When converting arbitrary color reproduction data, such as RGB (or red (R), green (G), blue (B)), into the color reproduction data of four colors or more, including the K plate, conversion conditions, using techniques such as the separation curve or the look-up table (LUT) are determined by the user based on the purpose of the print and empirical knowledge. In this respect, determining an arbitrary K plate formation condition before color conversion, while maintaining colorimetric color reproduction data, becomes quite difficult. Generally, the mapping relationship from CMYK to three-dimensional colorimetric space, such as RGB or L*a*b and XYZ, is not one-to-one; therefore, the inverse mapping from three-dimensional space into four-dimensional CMYK is not simple, nor is the answer unique.
This method proposes a solution of treating the mapping instead as a 3-to-3 mapping of CMY to calorimetric data after restricting the K plate to a certain condition. The K plate refers to an axis in the ink color space which further includes the C,M, and Y axes. Previous techniques for color adjustment include the method of solving Neugebauer equations by successive approximation with partial differentiation in 3-to-4 conversion while holding the K plate constant, as shown in the Japanese Patent Application Opened No. 175,452/91, and the method of achieving 3-to-3 conversion with a specified K plate condition, where the K plate has been previously determined and the printed matter is subject to colorimetry (a chart), as shown in Japanese Patent Application Opened No. 158,071/91.
In the first of these conventional methods, CMYK generation (3-to-4 conversion) can only be performed where the K plate condition is specified leaving little flexibility in the printing. The second method can conceivably calculate 3-to-4 conversion as a limited solution with a previously limited K plate condition (substituted and added amounts by K plate), but the 3-to-4 conversion must be completely repeated whenever the K plate conditions are changed, thus producing processing delays for variations in the K parameter. Because the output and measurement of a similar chart are necessary, the user has a lesser degree of freedom for deciding the arbitrary K plate condition and achieving 3-to-4 conversion on that condition. In selecting the K plate amount, it is difficult to set this condition while being conscious of practical print restrictions, such as maximum ink amount.
In the printing field, a user demands arbitrary CMYK generation for every image for at least the following purposes. It is better, in printing, to reflect the general print purposes of the following typical K plate generation as a condition when deciding the K plate amount where the K plate amount refers to an ink amount corresponding to the halftone dot % of the K plate.:
1) The portion that CMY inks are printed with the fixed and equal amount is considered as gray; this portion is then substituted for the K plate as a colorimetric reproducible equivalent, securing stability and precision of color reproduction mainly of gray (and so-called achromatic plate-making is realized).
2) The total amount of ink is reduced, the balance distribution is considered, and thus, stabilization of printing is possible.
3) The maximum density realized by the three colors of CMY is increased and the range of maximum density is defined.
However, the preparation of every picture with the K plate condition that satisfies the above ideal conditions requires significant experience and skill. Setting up the K plate condition with greater flexibility, including greater degrees of freedom, and still achieving accurate conversion is even more difficult when considering both colorimetric reproduction and actual print restrictions.
Moreover, the quantitative methods involved with setting the K plate condition considering the above limitations are not well established, so this presents a difficult problem.
SUMMARY OF THE INVENTION
It is an object of the present invention to eliminate the above technical problems with the conventional methods, and to provide a color reproduction data conversion method capable of permitting the user to set the K plate condition with a higher degree of freedom (such as with respect to chroma weight, brightness weight or K plate values); to convert three-dimensional colorimetric data into four color separation data (CMYK), while maintaining the colorimetric reproduction condition of the original three-dimensional calorimetric data; to obtain reproducible four-dimensional color reproduction data suitable for printing; and to separate the data into four colors, taking into consideration any non-linearities in the conversion process.
Another object of the present invention is to provide a color reproduction data conversion method that is capable of allowing the user to optionally establish the K plate condition while maintaining the colorimetric reproduction condition; to select a parameter most suitable for every image in order to determine the K plate condition; and particularly, to automatically set up the K plate generating condition without requiring the user to have empirical knowledge about print fitness and stability, when converting three-dimensional colorimetric data, into four color separation data (CMYK), while maintaining colorimetric color matching under the arbitrary selected K plate generating condition; and to obtain the most suitable four-dimensional color reproduction data separated from four colors.
In order to achieve these objectives, the first embodiment of the invention provides for a color reproduction data conversion method for converting three-dimensional calorimetric data into four-dimensional color reproduction data containing color components of cyan (C), magenta (M), yellow (Y), and black (K) while keeping a degree of metamerism comprising the steps of:
performing an inverse conversion from three-dimensional calorimetric space to three-dimensional CMY color space as to a plurality of different K plate amounts to obtain color matching ink amounts of CMY colors being metamer with the three-dimensional colorimetric data;
obtaining an achromatic amount comprising a ratio of total ink amount of CMYK for each of the plurality of different K plate amounts to a total ink amount of CMYK in the case where the K plate amount is set to a reference amount;
obtaining an achromatic amount function for said plurality of K plate amounts in a linear portion by examining and eliminating a non-linear portion in which said achromatic amount becomes non-linear for the plurality of K plate amounts;
generating a mapping function from the three-dimensional colorimetric data and the achromatic amount to the ink amounts of CMYK in the linear portion; and obtaining a K plate control condition as a weighting coefficient which reflects a K plate control condition for the achromatic amount successively, to perform a weighting of the achromatic amount with said K plate control condition previously selected;
determining the achromatic amount from the achromatic amount function and using the selected K plate control condition as a restraint condition for the inverse conversion from the three-dimensional colorimetric data to the four-dimensional color reproduction data; and
calculating the ink amounts of CMYK from the thus determined achromatic amount

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Color reproduction data converting method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Color reproduction data converting method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Color reproduction data converting method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2915267

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.