Color profile management and color collection management,...

Computer graphics processing and selective visual display system – Display driving control circuitry – Controlling the condition of display elements

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C345S215000, C345S215000, C345S594000, C345S604000, C358S518000, C358S001900

Reexamination Certificate

active

06525721

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention is directed to a graphical and interactive user interface for user collection and management of color profiles used in a common controller for full color IOTs.
Increasingly affordable and available computer controlled color printing and reproduction systems will promote wider use of color in document-intensive industries or document-intensive functional areas of enterprises. Using color effectively in environments that support diverse color systems to produce color display and printed materials requires reducing the complexity of color specification collection and management in order to maintain an easy to use, efficient and productive environment for both the management user and the end user submitting data for printing in a networked environment.
Some color specification systems utilize a device dependent color classification model which provides color descriptor classifications that are derived from, and which control, associated physical devices. Such device dependent color classification models include the additive red, green, and blue (RGB) color model used to physically generate colors on a color monitor, and the subtractive cyan, magenta, and yellow, plus black (CYMK) color model used to put colored inks or toners on paper. These models are not generally correlated to a human color perceptual model. This means that these device dependent color models provide color spaces that treat color differences and changes in incremental steps along color characteristics which are useful to control the physical devices but which are not validly related to how humans visually perceive or describe color. Furthermore, considerable trial and error may be required to select a specific color or to achieve a desired color modification because the color model and its color space representation is not uniform to the user, and a large change in one or more of the physical descriptors of the color space, such as in the R, G, or B dimensions, will not necessarily result in a correspondingly large change in the perceived color,
Other color models exist which are representations of color, based on the human perceptual attributes of hue, saturation, and value (or brightness or lightness) dimensions (HSV). While providing some improvement over the physically based RGB and CMYK color models, these color specifications are conveniently formulated geometric representations within the existing physically based color models, and are not psychophysically validated perceptually uniform color models.
A uniform color space, based on an underlying uniform color model, attempts to represent colors for the user in a way that corresponds to human perceptual color attributes that have been actually measured. Using a device independent and uniform color model as a basis for specifying and manipulating color provides a foundation for more user control, accuracy, and precision in color selection and editing, since color specification is not tied to the physical characteristics of a particular color rendering device. One such device independent color specification system is that developed by the international color standards group, the Commission Internationale de I'Eclairage (the “CIE”). CIE color specification employs device independent “tristimulus values” to specify colors and to establish device independent color models by assigning to each color a set of three numeric tristimulus values according to its color appearance under a standard source of illumination as viewed by a standard observer. Each set of X, Y, and Z tristimulus values represents a color according to its spectral power distribution, as a summation of the color contributions of all wavelengths within the spectral distribution of a color sample, corrected for the light source used to illuminate the colored sample and for the color sensitivity of the standard observer. The CIE has recommended the use of two approximately uniform color spaces for specifying color: the CIE 1976 (L*u*v*) or the CIELUV color space, and the CIE 1976 (L*a*b*) color space (hereafter referred to as “CIELAB” space or “LAB” space).
Color profiles provide color management systems with the information necessary to convert color data between native device color spaces and device independent, uniform color spaces. For example, the International Color Consortium specification ICC.1:1998-09 divides color devices into three broad classifications: input devices, display devices and output devices. For each device class, a series of base algorithmic models are described which perform the transformation between color spaces.
The complexity and quantity of underlying color models, and the need to accurately reproduce colors on a wide variety of media, directly impacts the complexity of color collection and management user interfaces. Prior art graphical user interface systems have generally consisted of pull-down menus in which the color collection and management features have been accessible only after navigating several layers deep into the menu system. These systems have generally been non-intuitive for both the interface user and the end user who needs to know which color profile to select for accurate color reproduction on the selected output media.
Accordingly, there is a need in the art for an improved graphical user interface system for color profile collection and management for full color IOTs.
SUMMARY OF THE INVENTION
A method and graphical user interface system are provided for color profile collection and management on the controllers for full color IOTs. In one embodiment of the present invention, the system comprises a graphical user interface having a color manager selection icon at the highest navigation level of the graphical user interface. The highest level contains a pathway bar that is always available, even at lower navigational levels, with selection icons for the most frequently performed tasks, including color management. A printer status window is also always displayed in another area of the graphical user interface so the interface user can, at all times, observe any printer fault messages being displayed and the status of the currently printing job.
When the color manager icon is selected, a color manager is opened that includes a view menu and a characterization tool icon for activating a profile characterization tool and a profile list window. The view menu includes filter selections permitting the user to selectively view only specific categories of color profiles installed on the system. The default filter selection causes all available profiles to be displayed while there are other filter selections to display only destination profiles, source profiles, device gray source profiles, device RGB source profiles, device CMY source profiles and device CMYK source profiles.
The profile list window displays a list of available profiles matching the filter criteria selected from the above described view menu. The profile list window contains columns for displaying a symbolic name of the profile, type, color space, white point and, importantly, a description of the profile. The symbolic name must be unique and will later be assigned to one or more output media in a one-to-many relationship. The one-to-many relationship is used advantageously when there are, for example, several brands of similar media for which a given profile will perform satisfactorily. The symbolic names can be chosen to be descriptive names of the corresponding input or output device or medium, making it easier for the user to assign the correct color profile to a given output medium. The profile list window also includes a column displaying an icon for each color profile that is characterized as a system profile that cannot be deleted or modified and a message box for displaying confirmation of recent actions.
A right mouse button menu is available to the user for each row, or color profile, in the profile list window. The right mouse button menu provides necessary functionality for managing the color profiles, permitting the user to modi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Color profile management and color collection management,... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Color profile management and color collection management,..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Color profile management and color collection management,... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3132322

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.