Color negative film element and process for developing

Radiation imagery chemistry: process – composition – or product th – Radiation sensitive product – Two or more radiation-sensitive layers containing other than...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C430S503000, C430S506000

Reexamination Certificate

active

06686136

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates color negative films and their chemical processing. The films are especially suitable for loading into one-time-use cameras and are intended to create images for scanning, electronic manipulations, and reconversion to a viewable form.
DEFINITION OF TERMS
The term “one-time-use camera” or “OTUC” is used to indicate a camera supplied to the user preloaded with a light sensitive silver halide photographic element and having a lens and shutter. The terms “single-use camera,” “film-with-lens unit,” “disposable camera” and the like are also employed in the art for cameras that are intended for one use, after which they are recycled, subsequent to removal of the film for development.
The term “E” is used to indicate exposure in lux-seconds.
The term “gamma” is employed to indicate the incremental increase in image density (AD) produced by a corresponding incremental increase in log exposure (&Dgr;log E) and indicates the maximum gamma measured over an exposure range extending between a first characteristic curve reference point lying at a density of 0.15 above minimum density and a second characteristic curve reference point separated from the first reference point by 0.9 log E.
The term “coupler” indicates a compound that reacts with oxidized color developing agent to create or modify the hue of a dye chromophore.
In referring to blue, green and red recording dye image-forming layer units, the term “layer unit” indicates the hydrophilic colloid layer or layers that contain radiation-sensitive silver halide grains to capture exposing radiation and couplers that react upon development of the grains. The grains and couplers are usually in the same layer, but can be in adjacent layers.
The term “exposure latitude” indicates the exposure range of a characteristic curve segment over which instantaneous gamma (&Dgr;D/&Dgr;log E) is at least 25 percent of gamma, as defined above. The exposure latitude of a color element having multiple color recording units is the exposure range over which the characteristic curves of the red, green, and blue color recording units simultaneously fulfill the aforesaid definition.
The term “gamma ratio” when applied to a color recording layer unit refers to the ratio determined by dividing the color gamma of a cited layer unit after an imagewise color separation exposure and process that enables development of primarily that layer unit by the color gamma of the same layer unit after an imagewise white light exposure and process that enables development of all layer units. This term relates to the degree of color saturation available from that layer unit after conventional optical printing. Larger values of the gamma ratio indicate enhanced degrees of color saturation under optical printing conditions.
The term “colored masking coupler” indicates a coupler that is initially colored and that loses its initial color during development upon reaction with oxidized color developing agent.
The term “substantially free of colored masking coupler” indicates a total coating coverage of less than 0.09 millimole/m
2
of colored masking coupler.
The term “dye image-forming coupler” indicates a coupler that reacts with oxidized color developing agent to produce a dye image.
The term “absorption half-peak bandwidth” indicates the spectral range over which a dye exhibits an absorption equal to at least half of its peak absorption.
The term “development inhibitor releasing compound” or “DIR” indicates a compound that cleaves to release a development inhibitor during color development. As defined DIR's include couplers and other compounds that utilize anchimeric and timed releasing mechanisms.
In referring to grains and emulsions containing two or more halides, the halides are named in order of ascending concentrations.
In referring to grains, “ECD” indicates mean equivalent circular diameter and, in describing tabular grains, “t” indicates mean tabular grain thickness.
The term “average aspect ratio” when used in reference to tabular emulsion grains, refers to the ratio of mean tabular grain equivalent circular diameter to mean tabular grain thickness.
The term “aspect ratio” when used in reference to an image refers to the ratio of image length to height as recorded on an element or as provided in viewable form.
References to blue, green, and/or red spectral sensitizing dyes indicate dyes that absorb blue, green, or red light and transfer the absorbed photon energy to silver halide grains when adsorbed to their surfaces.
Research Disclosure
is published by Kenneth Mason Publications, Ltd., Dudley House, 12 North St., Emsworth, Hampshire PO10 7DQ, England.
BACKGROUND OF THE INVENTION
There are a variety of one-time-use cameras that have provided amateur photographers with a low cost means of taking satisfactory pictures. Such cameras have been provided with lenses, shutters and film advance mechanisms. They are intended for one use, after which they are recycled, subsequent to removal of the film for development. While prior one-time-use cameras were satisfactory for many purposes, there remain problems with their performance. Such one-time-use cameras require a sensitive film and a short shutter time to reduce sharpness losses caused by motion of the camera during picture taking. However, high speed, high sensitivity films tend to be lower in sharpness and higher in grain than lower sensitivity films with the result that their use in such cameras leads to pictures that are inadequate for many purposes. The sharpness problem can be exacerbated by the poor quality of the lenses often employed in these one-time-use cameras. This problem is even more severe when one attempts to provide one-time use cameras that will provide negatives that are suitable for production of large prints by high magnification enlargement. Further, there is a desire in one-time-use cameras to provide more pictures from each camera. One way to do this would be to provide a smaller negative, thereby allowing the same amount of film to record more images. However, since the negatives were not satisfactory for high magnification enlargements, it was not possible to minimize the size of the negatives exposed without having a deterioration in the sharpness and graininess of the prints formed from the negative. Additionally, there would be fewer ecological concerns if more negatives could be taken on the same amount of film as there would be less generation of chemicals during development per print as well as more negatives taken per single-use camera. Further, these one-time-use cameras require a long latitude film since exposure control on the cameras is limited to non-existent and the only way of ensuring adequate picture taking ability in a variety of picture-taking situations is by designing the film to be adequately responsive to a wide variety of lighting conditions.
Color negative photographic elements are conventionally formed with superimposed blue, green and red recording layer units coated on a support. The blue, green, and red recording layer units contain radiation-sensitive silver halide emulsions that form a latent image in response to blue, green, and red light, respectively. Additionally, the blue recording layer unit contains a yellow dye image-forming coupler, the green recording layer unit contains a magenta dye image-forming coupler, and the red recording layer unit contains a cyan dye image-forming coupler. Following imagewise exposure, the photographic elements are processed in a color developer, which contains a color developing agent that is oxidized while selectively reducing latent image-bearing silver halide grains to silver. The oxidized color developing agent then reacts with the dye image-forming coupler in the vicinity of the developed grains to produce an image dye. Yellow (blue-absorbing), magenta (green-absorbing), and cyan (red-absorbing) image dyes are formed in the blue, green, and red recording layer units respectively. Subsequently the element is bleached (i.e., developed silver is converted back to silver hal

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Color negative film element and process for developing does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Color negative film element and process for developing, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Color negative film element and process for developing will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3347558

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.