Color motion picture print film with improved raw stock keeping

Radiation imagery chemistry: process – composition – or product th – Radiation sensitive product – Two or more radiation-sensitive layers containing other than...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C430S510000, C430S517000, C430S527000, C430S530000, C430S551000, C430S608000

Reexamination Certificate

active

06686138

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to a color motion picture print silver halide photographic film, and more particularly to such a film having a vanadium pentoxide containing antistatic layer and which has desirable raw stock keeping performance.
BACKGROUND OF THE INVENTION
Photographic elements may be susceptible to general fog formation or sensitivity loss when they are stored for an extended period of time in conditions of high temperature and humidity. The term “raw stock keeping” is used to refer to photographic performance changes which may occur between coating of a photographic element and actual use thereof. Various compounds have been disclosed for use as stabilizing agents in photographic elements to improve raw stock keeping performance.
The photographic industry has also long recognized the need to provide photographic films and papers with antistatic protection to prevent the accumulation of static charges during manufacture and use. Such protection is advantageous in photographic elements as static charges can cause irregular fog patterns in photographic silver halide imaging emulsions. Static charges are also undesirable because they attract dirt to the photographic element and this can cause repellency spots, desensitization, fog and physical defects. To prevent the problems arising from an accumulation of static charges, it is a conventional practice to provide an antistatic layer (i.e., a conductive layer) in a photographic element.
Photographic elements further typically comprise some form of antihalation protection. Halation has been a persistent problem with photographic films comprising one or more photosensitive silver halide emulsion layers coated on a transparent support. The emulsion layer diffusely transmits light, which then reflects back into the emulsion layer from the support surface. The silver halide emulsion is thereby re-exposed at locations different from the original light path through the emulsion, resulting in “halos” on the film surrounding images of bright objects.
One method proposed for antistatic and antihalation protection in photographic films comprises providing a dyed or pigmented layer behind a clear support as an antihalation backing layer, wherein the backing layer is designed to be removed during processing of the film. Typical examples of such antihalation backing layers comprise a light absorbing dye or pigment (such as carbon black) dispersed in an alkali-soluble polymeric binder (such as cellulose acetate hexahydrophthalate) that renders the layer removable by an alkaline photographic processing solution. Such carbon containing “rem-jet” backing layers have been commonly used for antihalation protection in motion picture films. The carbon particles additionally provide antistatic protection prior to being removed. While such rem-jet backing layers provide effective antihalation and antistatic protection for photographic films prior to processing, their use requires special additional processing steps for their subsequent removal, and incomplete removal of the carbon particles can cause image defects in the resulting print film. Additionally, it is often desirable to provide “process surviving” antistatic protection for photographic elements in order to prevent static build-up even after imagewise exposure and processing, especially for motion picture films which are subject to rapid transport through projection apparatus where static charges can attract dust particles which may detrimentally impact a projected image.
An alternative to the use of rem-jet backing layers is to use an antihalation layer or layers containing filter dye or silver metal coated between the support and the emulsion layers, wherein the filter dye or silver is solubilized and removed and/or decolorized during processing of the film, and a separate process-surviving antistatic backing layer. Process-surviving antistatic layers typically include, e.g., ionic polymers, electronic conducting non-ionic polymers, and metal halides or metal oxides in polymeric binders. Conductive fine particles of crystalline metal oxides dispersed with a polymeric binder have been found to be especially desirable for preparing optically transparent, humidity insensitive, antistatic layers for various imaging applications. Many different metal oxides, such as AnO, TiO
2
, ZrO
2
, Al
2
O
3
, SiO
2
, MgO, BaO, MoO
3
, and V
2
O
5
, are disclosed as useful as antistatic agents in photographic elements or as conductive agents in electrostatographic elements in such patents as U.S. Pat. Nos. 4,203,769, 4,275,103; 4,394,441; 4,416,963; 4,418,141; 4,431,764; 4,495,276; 4,571,361; 4,999,276; and 5,122,445. The use of metal oxide materials is further advantageous, as their antistatic properties allow the use of a protective overcoat layer to provide abrasion protection and/or enhance frictional characteristics while still providing acceptable antistatic performance. Antistatic layers which contain vanadium pentoxide have been found to provide excellent protection against static and are highly advantageous in that they have excellent transparency and their performance is not significantly affected by changes in humidity.
Relatively small grain, high chloride emulsions (e.g., emulsions having average grain size equivalent circular diameters of less than about 1 micron and halide contents of greater than 50 mole % chloride) are typically used in photographic print films and papers in order to optimize print image quality and enable rapid processing. Such emulsions typically result in relatively low speed photographic elements in comparison to camera negative films. Low speed is compensated for by the use of relatively high intensity print lamps or lasers for exposing such print elements. For comparison purposes, it is noted that print films and papers, such as motion picture color print films, e.g., when rated using the same international standards criteria used for rating camera negative films, would typically have an ISO speed rating of less than 10, which is several stops slower than the slowest camera negative films in current use. Such photographic print elements generally have been found to be far less susceptible to product performance changes upon storage under high humidity conditions than camera negative films. It has been found by Applicants, however, that even such relatively low speed silver halide photographic print elements can surprisingly exhibit raw stock keeping performance changes under even moderate humidity storage conditions when vanadium pentoxide particles are used in an antistatic layer.
In U.S. Pat. No. 5,650,265, palladium compounds are disclosed specifically for use in photographic print elements which comprise antistatic layers containing vanadium pentoxide, in order to improve unexpected poor keeping performance for such elements. While palladium compounds work well in such elements for such purpose, palladium is significantly more expensive than other noble metals. Accordingly, it would be desirable to provide alternatives to the use of palladium compounds as raw stock keeping stabilizing compounds in photographic print elements which comprise antistatic layers containing vanadium pentoxide.
SUMMARY OF THE INVENTION
In accordance with one embodiment, the present invention is directed towards a silver halide light sensitive motion picture photographic print element comprising a support having a front side and a back side and bearing on the front side thereof in order a yellow dye image-forming unit comprising at least one blue-sensitive silver halide emulsion layer having associated therewith at least one yellow dye-forming coupler, a cyan dye image-forming unit comprised of at least one red-sensitive silver halide emulsion layer having associated therewith at least one cyan dye-forming coupler, and a magenta dye image-forming unit comprising at least one green-sensitive silver halide emulsion layer having associated therewith at least one magenta dye-forming coupler; said element further comprising an antistatic layer containing vanadium pe

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Color motion picture print film with improved raw stock keeping does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Color motion picture print film with improved raw stock keeping, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Color motion picture print film with improved raw stock keeping will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3337421

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.