Color image processing method and apparatus

Image analysis – Color image processing – Color correction

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C348S225100, C348S647000

Reexamination Certificate

active

06618502

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a color image processing method and apparatus. This invention particularly relates to a color image processing method and apparatus for a monitor camera, a medical camera, or the like, which is provided with image sensing means, such as charge coupled device (CCD) image sensor.
2. Description of the Prior Art
Color video cameras (hereinbelow referred to simply as the cameras) for recording color images, which cameras are provided with image sensing means, such as CCD image sensors, have heretofore been known. The cameras are currently used widely for broadcasting, for domestic use, as monitor cameras, as medical cameras, and the like.
In cases where a color image is recorded with the camera, if the camera is a single-plate type of camera, in order for color signals (e.g., R, G, and B three primary color signals) to be obtained from a single CCD image sensor, a color filter is superposed upon each of pixels arrayed in a two-dimensional pattern in the color image, and chrominance information is obtained in the form superimposed upon luminance information. A luminance signal and the three primary color signals (or signals in accordance with the three primary color signals) are thus separated from one another. As the color filter, a color filter array, in which three to four kinds of colors are arrayed in a dot-like pattern, is employed.
Each of the three primary color signals having been separated from one another is then subjected to white balance (WB) compensation, gamma (&ggr;) compensation for canceling &ggr; characteristics of a cathode ray tube, high-level suppression processing, such as knee processing or white clipping (WC), or the like. The color signals having been obtained from the processing are fed together with the luminance signal into an output circuit for performing matrix processing, encoding processing, or the like. In this manner, the signals are transformed into R, G, and B signals of predetermined levels or video signals conforming to broadcasting standards, such as NTSC standards. As well known, the high-level suppression processing is performed in order to suppress a dynamic range of natural light to a limited signal level range in accordance with the TV signal standards.
FIG. 5
is a block diagram showing signal processing in conventional cameras.
With the conventional high-level suppression processing, with respect to each of the three primary color signals, in cases where the signal level of the color signal is higher than a predetermined signal level, the color signal is suppressed. Also, the luminance signal is reproduced in accordance with the three primary color signals, which have been obtained from the suppression processing. In this manner, suppression processing on the luminance signal is performed simultaneously.
As described above, with the conventional high-level suppression processing, with respect to each of the three primary color signals, the suppression processing is performed for each color signal. Therefore, if the signal levels of the color signals are different from one another, it will occur that a certain color signal is suppressed and the other color signals are not suppressed. If a certain color signal is suppressed, the composition ratios of the colors will vary from the original composition ratios. Therefore, in cases where the conventional high-level suppression processing is performed, the problems occur in that the hue changes and the color reproducibility becomes bad (as will be described later with reference to
FIGS. 8A
,
8
B, and
8
C). For example, a phenomenon occurs in that, when a photograph of a person is taken, as an aperture is opened, flesh color becomes tinted with yellow. Also, a phenomenon occurs in that, as an aperture is opened, a single-color, high-saturation image becomes tinted with other colors. (Such phenomena will hereinbelow be referred to as the false color phenomenon.) For example, in the cases of endoscope cameras, the region in the body cavity ordinarily has a rugged shape, and it often occurs that a pattern of a dark region and a pattern of a bright region are recorded simultaneously. In the cases of such image sensing conditions, since the dynamic range of the CCD image sensor, or the like, cannot be broadened unlimitedly, it must be selected whether an exposure quantity is to be matched with the dark region and signal components representing the bright region are to be suppressed (e.g., the bright region is rendered white such that its details become imperceptible), or the exposure quantity is to be matched with the bright region and the pattern of the dark region is to be rendered black such that its details become imperceptible. Therefore, the image quality of the pattern of the bright region or the pattern of the dark region becomes bad. Particularly, in cases where the exposure quantity is matched with the dark region and the signal components representing the bright region are suppressed, the phenomenon described below occurs. Specifically, chrominance information of the region in the body cavity is primarily composed of red color information. However, the color filter of the CCD image sensor has the characteristics such that, in such cases, besides the red color signal components, for example, green color signal components are also outputted in no small quantities. Therefore, if the red color signal components are suppressed, the ratio of the green color signal components will become comparatively high. As a result, at a highlight such that it does not become white and its details do not become imperceptible due to the signal suppression, red at a high-saturation area becomes tinted with green.
In order for the false color phenomenon to be prevented, highlight chroma suppression (HLCS) processing may be performed, and the video signals obtained from the processing may be outputted. With the HLCS processing, reference is made to a luminance signal having been separated from detected signals, and processing is performed such that, at a high luminance level such as that at which saturation of the luminance signal is reached, color signals are suppressed so as to eliminate the chrominance information, and only the luminance signal remains.
However, the HLCS processing is the one in which the color signals are suppressed at a highlight area of the luminance signal. Therefore, for example, in cases where the luminance signal is of a low level and only the red color signal is of a high level as in a red high-saturation image, the problems occur in that only the red color signal is suppressed by the high-level suppression processing, and the HLCS processing is not effected. Accordingly, the false color phenomenon occurring due to the suppression of only the red color signal cannot be prevented.
Also, with the conventional techniques, in the cases of an image containing an excessively high level of image information such that saturation of the output obtained from the image sensing operation is reached, a processed image is outputted in which a bright region has been rendered white such that its details become imperceptible. However, in the cases of the medical cameras, such as endoscope cameras, if correct chrominance information is not outputted, the problems occur in that the efficient and accurate diagnosis of an illness cannot be made. Therefore, the signal processing, in which the chrominance information is eliminated, is not appropriate for medical cameras.
SUMMARY OF THE INVENTION
The primary object of the present invention is to provide a color image processing method, wherein a false color phenomenon at a highlight area or a high-saturation area is capable of being minimized or prevented regardless of a luminance signal level.
Another object of the present invention is to provide an apparatus for carrying out the color image processing method.
The present invention provides a color image processing method, comprising the steps of:
i) performing an image sensing operation for detecting an image of an object

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Color image processing method and apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Color image processing method and apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Color image processing method and apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3089841

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.