Color filters, sequencers and displays using color selective...

Liquid crystal cells – elements and systems – Particular structure – Interconnection of plural cells in series

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06667784

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to color selective polarization modulation and, more specifically, to color sequencers for colorizing imaging devices, such as displays and cameras.
2. Background of the Related Art
Full color display is generally implemented using one of four techniques: (1) spatially using color filter arrays; (2) temporally using sequential color techniques; (3) additive superposition using multiple optical paths; or (4) subtractively using stacked display panels. In spatial color systems, each full-color pixel is subdivided into at least three sub-pixels, one dedicated to each additive primary color. A color filter array (CFA), consisting of red, green and blue spectral filters, is registered to the active pixel elements of a liquid crystal display (LCD) such that the transmission level of each primary color can be locally controlled. This technique requires that the sub-pixels be sufficiently small that they are not individually resolvable by the viewer. The resulting spatial integration by the eye yields a perceived full-color image. As a result of sub-dividing, display panels used in spatial color systems require three times the number of pixels than those used in monochrome displays.
In sequential color techniques, sub-frames are displayed, with each sub-frame comprising the distribution of an additive primary color in a full-color image. By displaying the sub-frames at a sufficient rate, e.g., three-times the video rate, or 180 Hz, the eye integrates the sub-frames temporally, yielding a perceived full-color image. In this case, each pixel provides full-color because there is no spatial subdivision. In principle, a full-color pixel using a CFA provides the same brightness as a sequential pixel of the same area. However, neither makes efficient use of light, because displaying an additive primary color generally means blocking the complementary subtractive primary.
To implement a full-color display using additive superposition, as for example in a projection system, the light source is split into three optical paths, each containing the light source power in one additive primary band. Typically, dichroic beamsplitters are used to separate the three additive primary colors into three physically separate paths. One display panel is devoted to spatially modulating the optical transmission in each optical path. Subsequently, each image is additively superimposed to form a full color image. Though this technique is more hardware intensive, it is in principle three times brighter than either spatial or temporal color techniques. As such, it is the preferred technique for implementing projection systems.
In a subtractive display, three optical paths are effectively created without wavefront shearing. The term subtractive is appropriate because such systems are analogous to color film. Though all light travels the same physical path, only specific layers of the structure manipulate light in each wavelength band. In practice, a full-color display consists of a stack of three co-registered transmissive display panels, each responsible for independently determining the local transmission of one additive primary. Because there is only one physical path, each stage must be made independent of the others using wavelength selective polarization effects. Luminance modulation requires both a polarized input and an effective voltage-controlled analyzing polarizer. Thus, color independent luminance modulation is typically achieved by wavelength selectively controlling the degree of input polarization, and/or the wavelength selectivity of the analyzer. Compared to additive split-path displays, subtractive displays have unique design challenges. In order to obtain high optical throughput, panel transmission losses must be low, any passive color control elements must be low loss, and images must be efficiently relayed between panels. In direct view display systems, there are additional complications associated with color quality and parallax the when the display is viewed off-normal.
There are several subtractive display schemes disclosed in the related art. The simplest structures, such as those disclosed in U.S. Pat. Nos. 3,703,329 and 5,032,007, uses three guest host LCDs with a neutral polarizer. Each LCD panel contains a dye that acts as a color selective polarizer with in-plane projection determined by the applied voltage. In other embodiments, the function of modulation and wavelength selective polarization analysis is decoupled by combining quasi neutral LCDs with color selective polarizing films. Such polarizers can be pleochroic dye polarizers, such as those disclosed in U.S. Pat. No. 4,416,514, U.S. Pat. No. 5,122,887, and K. R. Sarma et al., SID '93 DIGEST, p. 1005, or cholesteric LC films, such as those disclosed in U.S. Pat. No. 5,686,961. Other potential color polarizer film technologies include multi-layer stretched polymer films that behave as dielectric mirrors in one linear polarization, and are isotropic in the orthogonal polarization, such as those disclosed in U.S. Pat. No. 5,612,820, and coated prismatic films, such as those disclosed in U.S. Pat. No. 5,422,756. In still other configurations, such as the configuration disclosed in U.S. Pat. No. 5,050,965, mixed-mode subtractive displays are disclosed that utilize color selective polarizers in combination with birefringence color from twisted LCD panels.
Performance of related art subtractive displays has been hampered by a number of factors. For instance, color quality and throughput are poor due to the shallow transition slope and low peak transmission of many dye polarizers. More fundamentally, the optical density of the black state is typically poor when using three subtractive filter stages.
In a subtractive mode, each additive primary is generated via the cooperative action of two stages, each blocking one additive primary. When the blocked additive primaries are adjacent primaries, there is typically an unwanted leakage. More significantly, a dense black state is obtained by subtracting all three additive primaries from white, including any interprimary light. This represents a difficult spectral management problem, because contrast ratios can plummet with even small side lobe amplitudes. Furthermore, designs that achieve acceptable contrast are frequently not robust against small fabrication tolerances, variations in modulator uniformity, and environmental changes. This is because high contrast ratio demands a high level of cooperation between stages.
Reduced side lobe levels can be obtained by increasing the overlap of each subtractive primary. However, this cannot be done without adversely affecting the color coordinates of the primary colors. While passive notch filtering can be provided to eliminate interprimary light, there is an associated insertion loss and an increase in cost. As in printing systems, a fourth “black-panel” can be inserted to improve contrast ratio, which again increases cost and complexity and reduces throughput. This “black-panel” technique is disclosed in U.S. Pat. No. 5,050,965.
Tunable filters or color shutters are well documented in the prior art. There are two classes of such filters: polarization interference filters (PIFs), and switched polarizer filters (SPFs).
PIFs have traditionally been used for spectrometry instrumentation, because they are bulky, complex to fabricate, and require calibration. Lyot PIFs consist of stand-alone filter units acting cooperatively to generate a bandpass profile. Such spectral profiles are not considered ideal for display, particularly in the blue, where adequate red blocking determines an unnecessarily narrow bandpass width. Tuning Lyot PIFs typically requires inserting analog LC devices in each stage and forming a look-up table.
The Solc PIF has the benefit that internal polarizers are eliminated, as do other filters designed using finite impulse response methods (Harris, Ahmann, and Chang). In general, however, tuning the profile of a PIF requires shifting the center w

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Color filters, sequencers and displays using color selective... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Color filters, sequencers and displays using color selective..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Color filters, sequencers and displays using color selective... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3162491

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.