Facsimile and static presentation processing – Static presentation processing – Attribute control
Reexamination Certificate
1999-01-12
2001-04-17
Rogers, Scott (Department: 2624)
Facsimile and static presentation processing
Static presentation processing
Attribute control
C358S504000, C358S521000
Reexamination Certificate
active
06219155
ABSTRACT:
TECHNICAL FIELD OF THE INVENTION
The present invention pertains in general to electrophotographic printers and, more particularly, to a plurality of print engines arranged in parallel to process print jobs in a parallel manner.
BACKGROUND OF THE INVENTION
Electrophotographic print engines have been utilized with both printers and copiers. In a printer, the print engine is typically interfaced with a computer to select and organize fonts or bit map the images. In a copier application, the print engine is interfaced with an input device that scans the image onto the photoconductor drum of the print engine. However, a CCD device could also be utilized in this application in the form of a CCD scanner. In either of the applications, a conventional print engine for a monochrome process would typically feed a single sheet of paper and pass it by the photoconductor drum for an image transfer process and then pass it to a fuser. Thereafter, the completed sheet will be output. Multiple copy print jobs will sequentially feed the paper in a serial manner. The speed of the printer is a function of the speed at which the image can be created, the speed at which the image can be transferred to the paper and the speed of the fuser. As increased output is required, the speed of each of these elements must be increased.
In a monochrome process, only one transfer operation is required. However, in a multipass color process, multiple images must be superimposed on one another on the sheet of paper in a direct transfer system, thus requiring multiple passes of the paper or image carrier through the print engine. In a double transfer system, the image is disposed on an intermediate drum and then the composite image transferred to the paper or image carrier. In a multiple print job on a direct transfer system, this requires each sheet of paper to be printed in a serial manner by passing it through the print engine. For either the monochrome process or the color process, a conventional serial feed print engine has the output thereof defined by the speed of the input device and the speed of the print engine itself.
One technique that has been utilized to increase throughput is a tandem print engine. In a tandem print engine, multiple colors can be disposed on the sheet of paper or the image carrier at different stations that are disposed in serial configuration. In this manner, the speed is the same for one, two, three or four color printing.
When dealing with multiple print engines, there can be a problem that exists with respect to insuring that there is adequate “color balance”. In general, all color devices have a native range of colors in which they operate. This is called the color gamut of that device. Any color that falls within this gamut can be reproduced. Any color that falls outside cannot. This gamut is defined by the hardware of the device and its addressability. A monitor uses a phosphorus of some given type and is addressed in 8 bits per channel of RGB. This native gamut or range of colors changes for every different device. If it is desirable to reproduce a color on some devices, two things have to occur. First, those devices would have to be able to make that color, meaning, have that given color inside their gamuts. Second, the color would have to be correctly described, or defined as it moves from one device to another. RGB, CMYK, Lab, LCH, are all methods that devices can utilize to describe colors. They do not always have a direct translation between them, however. A method is needed to correctly translate between these methods. The analogy is as if one person would speak German and another spoke french, wherein an intermediate or interpreter would be required in order to provide communication. One method for solving this problem is to use a device independent (or color independent) space. A number of years ago, the CIE created a device independent space (XYZ) that defines color based on the light source they are viewed under, and the color response of the eye. A color independent space is a mathematical way to map device gamuts to see where they intersect. Where they intersect represents the colors they share. It is also the best platform for determining which color to use if gamuts do not intersect. Also, in this master color space, all colors are described or defined using the same terms, independent of any device. In this space, all colors are brought to a common ground. Once a color is defined in XYZ space, it can be sent and accurately reproduced on any device whose gamut in XYZ space includes that color. The reproduction of any color is accomplished by correlating the device native gamut to the color independent space.
During a conventional print operation, toner is used up at a rate that is actually defined by the amount of information that is disposed on the given page multiplied by the number of pages. Typically, systems incorporate some type of page counter that, when it exceeds a predetermined number of pages, indicates that the toner is low. This, of course, is reset when a new toner cartridge is disposed in the printer. However, this toner decision is made strictly based upon the number of pages and not the amount of toner actually depleted from the toner cartridge. This is due to the fact that some pages have a very light toner usage compared to others. For example, an image having a large percentage of black area associated therewith will utilize a large amount of toner, whereas a page having very light gray regions will utilize a small amount of toner. As such, the determination of a low toner level in a cartridge is extremely inaccurate.
SUMMARY OF THE INVENTION
The present invention disclosed and claimed herein comprises a method for calibrating the operation of a color marking engine. In one embodiment, the halftone operation in a color marking engine is calibrated wherein an image is created with a plurality of maximum density dots. A test pattern of a plurality mid-density halftone images is first created. Each image in the test pattern is associated with a different offset value of the density levels of the cyan, magenta and yellow toners associated with the color marking engine. Each of the images comprises predetermined and different combinations of the toner offsets. The test pattern is run through the marking engine to provide an output image and then a user visibly selects from the output image a desired one of the halftone images that is selected in accordance with predetermined visual criteria. Thereafter, the density level of the cyan, magenta and yellow toners is offset in accordance with the associated offsets on the selected image at the marking engine after the RIP operation.
In another aspect of the present image, a plurality of marking engines are provided with a single RIP that generates a RIPed image for distribution thereto. In one embodiment, at least one of the marking engines is subjected to the steps of running, selecting and offsetting, and, in another embodiment, all of the marking engines are subjected to the steps of running, selecting and offsetting. When more than one of the marking engines is subjected to these steps, the single test pattern is run through all of the subject marking engines to provide an output image for each subject marking engine. The user selects from each of the outputs the desired image such that each of the subject marking engines can have the offsets applied thereto after the RIPing operation.
In further embodiment of the present invention, the calibration is applied to dot linearization curves for the multiple color marking engines having a single RIP associated therewith. In order to linearize the dots for a given screen, a linearization curve is generated and applied to the RIP operation. Each linearization curve includes a plurality of offsets for each screen density value that is to be generated in an halftone reproduction mode. The linearization curve in one embodiment is an average of the determined linearization curves for each of the marking engines. These curves are generated by running a plural
Howison Gregory M.
Howison, Chauza, Handley & Arnott, L.L.P.
Mosher Stephen S.
Rogers Scott
T/R Systems
LandOfFree
Color correction of contone images in a multiple print... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Color correction of contone images in a multiple print..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Color correction of contone images in a multiple print... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2500525