Colon cancer antigen panel

Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C530S350000, C435S007100, C514S002600

Reexamination Certificate

active

06794501

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to use of novel colon cancer-associated nucleic acid molecules and the polypeptides they encode as markers for cancer, including colon cancer. The invention also relates to the use of a panel of colon cancer-associated nucleic acid molecules and the polypeptides they encode and their use as markers for colon cancer. In addition, the invention relates to the use of such nucleic acid molecules and the polypeptides they encode for diagnosing colon cancer, and monitoring the colon cancer's response to treatment.
BACKGROUND OF THE INVENTION
Colon cancer, which is also known as cancer of the large bowel and colorectal cancer, is second only to lung cancer as a cause of cancer death in the United States. Colorectal cancer is a common malignant condition that generally occurs in individuals 50 years of age or older; and the overall incidence rate of colon cancer has not changed substantially during the past 40 years. (Harrison's Principles of Internal Medicine, 14/e, McGraw-Hill Companies, New York, 1998). The treatment of colon cancer once diagnosis is made depends on the extent of the cancer's invasion of the colon tissue, lymph nodes, and metastasis to other organs such as the liver. The survival rate for patients diagnosed with early-stage cancer is about 90% survival after 5 years. The five-year survival rate drops if the cancer is not detected until the cancer has spread beyond the mucosal layer of the colon, and drops significantly further if, when detected, the cancer has spread beyond the colon to the lymph nodes and beyond. Thus, it is critical to diagnose colon cancer at the earliest possible stage to increase the likelihood of a positive prognosis and outcome.
The traditional method of colon cancer diagnosis is through the use of non-invasive or mildly invasive diagnostic tests, more invasive visual examination, and histologic examination of biopsy. Although these tests may detect colon cancers, each has drawbacks that limit its effectiveness as a diagnostic tool. One primary source of difficulty with most of the currently available methods for diagnosing colorectal cancer, is patient reluctance to submit to, or follow through with the procedures, due to the uncomfortable or perceived embarrassing nature of the tests.
Some of the less invasive diagnostic methods include fecal occult blood testing and digital rectal exam. A digital exam may detect tumors at the distal end of the colon/rectum, but is not effective at more proximal levels. The usefulness of tests for occult blood is hampered by the intermittent bleeding patterns of colon cancers, which can result in a high percentage of false negative results. For example, approximately 50 percent of patients with documented colorectal cancers have a negative fecal blood test. In addition, false-positive fecal occult blood tests may also present problems for accurate diagnosis of colon cancer, because a number of non-colon cancer conditions (e.g.: gingivitis, ulcer, or aspirin use) may yield positive test results, resulting in unnecessary invasive follow-up procedures. These limitations of the less-invasive tests for colon cancer may delay a patient's procurement of rapid diagnosis and appropriate colon cancer treatment.
Visual examination of the colon for abnormalities can be performed through endoscopic or radiographic techniques such as rigid proctosigmoidoscopy, flexible sigmoidoscopy, colonoscopy, and barium-contrast enema. These methods are expensive, and uncomfortable, and also carry with them a risk of complications.
Another method of colon cancer diagnosis is the detection of carcinoembryonic antigen (CEA) in a blood sample from a subject, which when present at high levels, may indicate the presence of advanced colon cancer. But CEA levels may also be abnormally high when no cancer is present. Thus, this test is not selective for colon cancer, which limits the test's value as an accurate and reliable diagnostic tool. In addition, elevated CEA levels are not detectable until late-stage colon cancer, when the cure rate is low, treatment options limited, and patient prognosis poor.
More effective techniques for colon cancer diagnosis, and evaluation of colon cancer treatments are needed. Although available diagnostic procedures for colon cancer may be partially successful, the methods for detecting colon cancer remain unsatisfactory. There is a critical need for diagnostic tests that can detect colon cancer at its early stages, when appropriate treatment may substantially increase the likelihood of positive outcome for the patient.
SUMMARY OF THE INVENTION
The invention provides methods for diagnosing colon cancer based on the identification of certain colon cancer-associated polypeptides and the encoding nucleic acid molecules thereof, as antigens that elicit immune responses in colon cancer. The identified antigens can be utilized as markers for diagnosing colon cancer, for following the course of treatment of colon cancer, and for assessing colon cancer treatments.
According to one aspect of the invention, methods for diagnosing colon cancer in a subject are provided. The methods include obtaining a biological sample from a subject, contacting the sample with at least two different colon cancer-associated polypeptides encoded by nucleic acid molecules comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs:1-15, and determining specific binding between the colon cancer-associated polypeptides and agents in the sample, wherein the presence of specific binding is diagnostic for colon cancer in the subject.
According to another aspect of the invention, methods of determining onset, progression, or regression, of colon cancer in a subject are provided. The methods include obtaining from a subject a first biological sample, contacting the first sample with at least two different colon cancer-associated polypeptides encoded by nucleic acid molecules comprising a nucleotide sequence selected form the group consisting of SEQ ID NOs:1-15, determining specific binding between agents in the first sample and the at least two different colon cancer-associated polypeptides, obtaining from a subject a second biological sample, contacting the second biological sample with at least two different colon cancer-associated polypeptides encoded by nucleic acid molecules comprising a nucleotide sequence selected form the group consisting of SEQ ID NOs:1-15, determining specific binding between agents in the second sample and the at least two different colon cancer-associated polypeptides, and comparing the determination of binding in the first sample to the determination of specific binding in the second sample as a determination of the onset, progression, or regression of the colon cancer.
According to yet another aspect of the invention, methods for selecting a course of treatment of a subject having or suspected of having colon cancer is provided. The methods include obtaining from the subject a biological sample, contacting the sample with at least two different colon cancer-associated polypeptides encoded by nucleic acid molecules comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs:1-15, determining specific binding between agents in the sample that are differentially expressed in different types of cancer, and the colon cancer-associated polypeptides, and selecting a course of treatment appropriate to the cancer of the subject. In some embodiments, the treatment is administering antibodies that specifically bind to the colon cancer-associated polypeptides. In some embodiments, the antibodies are labeled with one or more cytotoxic agents.
In some embodiments of the foregoing methods, the biological sample is a blood sample. In some embodiments, the agents are antibodies or antigen-binding fragments thereof. In some embodiments of the foregoing methods, the biological sample is contacted with at least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 different colon cancer-associated polypeptides encoded by nuclei

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Colon cancer antigen panel does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Colon cancer antigen panel, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Colon cancer antigen panel will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3243663

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.