Data processing: vehicles – navigation – and relative location – Relative location – Collision avoidance
Reexamination Certificate
2001-12-26
2002-10-22
Cuchlinski, Jr., William A. (Department: 3661)
Data processing: vehicles, navigation, and relative location
Relative location
Collision avoidance
C701S300000, C701S214000, C180S167000, C180S169000, C342S455000, C348S113000, C340S435000, C340S436000
Reexamination Certificate
active
06470273
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to systems for collision avoidance in traffic by automotive vehicles and more particularly to an apparatus for avoiding collision by sensing the presence of nearby vehicles and alerting a driver.
2. Description of Related Art
The following art defines the present state of this field:
Brown et al., U.S. Pat. No. D366,848 describes the ornamental design for a vehicle proximity warning indicator.
Meyer, U.S. Pat. No. 3,192,437 describes a vehicle having a rearwardly directed lamp and a voltage source, a warning system for indicating to the operator of a succeeding vehicle that he is too close for driving safety and comprising an electromagnetic relay including an armature, a switch having a movable contact and first and second stationary contacts, said movable contact being actuable by said armature circuit means connecting the movable contact with the source, circuit means including a flasher unit connecting the first stationary contact with the lamp, circuit means connecting the second stationary contact with the lamp and light responsive means on said vehicle and positioned to receive light from the headlights of a succeeding vehicle, said light responsive means connected with the source for developing a signal quantity corresponding to the intensity of light received from the headlamps of a succeeding vehicle, the relay actuated switch including a relay coil connected with the light responsive means for energization thereby and for actuating the movable contact so as to selectively connect the movable contact with the first and second stationary contacts to respectively alternately or constantly energize the lamp when the intensity of light received from a succeeding vehicle is respectively above or below a predetermined value.
Cooper et al., U.S. Pat. No. 3,935,922 describes a vehicle guidance mechanism for guiding a vehicle along a surface by means of an invisible guide line containing fluorescent material comprising an ultraviolet lamp that causes the guide line to fluoresce and emit visible light; photocell sensors mounted in the vehicle and adapted to sense the visible radiation and produce an error output signal proportional to the variation of vehicle position from a predetermined lateral position with respect to the guide line; and a control device in the vehicle adapted to steer the vehicle in response to the error signal so as to cause the vehicle to follow the guide line. An automatic contrast control circuit eliminates the effect of background illumination in the output signal and produces a constant closed loop gain with respect to the signal received from the guide line. Modulation circuitry and appropriate filters further reduce the effects of background illumination and improve the reliability and line detecting ability of the guide system. Line detection circuitry is employed to prevent operation of the automatic control device unless the vehicle is tracking a valid guide line/
Asayama, U.S. Pat. No. 5,214,408 describes a distance detecting apparatus enabling the driver of a vehicle to readily and concurrently recognize the location and direction of each of a plurality of objects present in the driver's field of view, in daylight or darkness, and at the same time determine whether each of the objects is an obstacle to the vehicle travel. The objects sensed by a pair of first and second image sensors
3
,
4
are displayed on a screen
11
in a plurality of windows
15
-
19
. Deviations between the images of the objects within the respective windows are electrically detected so that the distance to an object within each window is individually calculated based on the deviations. Obstacles to the travel of the vehicle can be discriminated on the basis of the positions of the windows on the screen and the distances to the objects in the respective windows as detected. Infrared light can be projected onto objects present within the fields of view of the image sensors when natural visible light is insufficient for the image sensors which, in this case, are sensitive to infrared light.
Patchell, U.S. Pat. No. 5,668,539 describes a thermal emitted radiation detecting device configured to detect objects in visual blind spots of a vehicle. A low cost differential detector is used which is sensitive to temperature change. Optics train two different fields of view on the detector and switch between the two fields of view to provide a blind spot field of view and a reference field of view. The presence of a vehicle in the blind spot field of view results in a temperature difference between the two fields of view. The resulting detector output signal is compared to predetermined threshold levels and then used to provide an indication, either visual or audible. Several embodiments of optics and switching fields of view are provided.
Doi et al., U.S. Pat. No. 5,805,103 describes a distance monitoring system of a vehicle monitoring a distance to a preceding vehicle traveling directly ahead of the vehicle to determines whether the preceding vehicle is decelerating by comparing a change in the vehicle speed with a reference value which is varied according to various driving condition in relation in particular to dangers such as collisions against the preceding vehicle.
Franke et al., U.S. Pat. No. 5,890,083 describes an apparatus for determining the distance of a vehicle from a roadway side marking. An arrangement of light sensitive sensor elements is fitted to the vehicle for optically scanning a portion of the roadway located in front of the vehicle. An evaluation unit, connected downstream of the sensor element arrangement, is also provided. Only one or a few sensor element lines are used as the sensor element arrangement. Each line scans a narrow strip of the roadway which runs in front of the vehicle, not parallel to the vehicle longitudinal axis, and extends laterally as far as the roadway side marking. The evaluation unit reads each sensor element line sequentially and processes the received signals to determine the lateral distance of the vehicle from the roadway marking. The relatively small quantity of data which accumulates permits the processing of the data digitally in real time by a conventional microprocessor. The apparatus is used as sleep warning system or lane guard for motor vehicles.
Shimizu et al., U.S. Pat. No. 5,920,382 describes a distance-measuring apparatus including light-sensitive devices formed of optical sensor arrays disposed on image-forming surfaces of right and left image-forming lenses, respectively. The apparatus uses image data from the optical sensor arrays of the light-sensitive devices to determine the distance from an object such as a vehicle in front of the apparatus via a distance detection circuit and capable of detecting condensation or a foreign particle obscuring a cover glass or defective pixels in the optical sensor arrays. In a defective condition, a defective visibility sensor emits an alarm signal to alert the operator.
Lang et al., U.S. Pat. No. 5,963,127 describes a control device for vehicles including a sensor mounted to the vehicle for detecting an object in a monitored zone adjacent the vehicle and providing a responsive output signal when an object is detected in the monitored zone; a signaling device mounted to the vehicle for providing a speed output signal indicative of a speed of travel of the vehicle; a control unit mounted to the vehicle for receiving sensor output signals and speed output signals; and a warning device mounted to the vehicle for providing a warning signal to a driver of the vehicle, the control unit controlling the warning device to provide the warning signal responsive to the sensor output signal and the speed output signal so that the warning device provides a warning signal only when the sensor detects an object in the monitored zone and the signaling device provides a speed output signal indicating that the speed of the vehicle is below a predetermined value. A related vehicle and method are also discl
Halsted Milton
Williamson Harvey
LandOfFree
Collision warning system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Collision warning system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Collision warning system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2946751