Collector for EUV light source

Radiant energy – Radiant energy generation and sources – With radiation modifying member

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

10798740

ABSTRACT:
A method and apparatus for debris removal from a reflecting surface of an EUV collector in an EUV light source is disclosed which may comprise the reflecting surface comprises a first material and the debris comprises a second material and/or compounds of the second material, the system and method may comprise a controlled sputtering ion source which may comprise a gas comprising the atoms of the sputtering ion material; and a stimulating mechanism exciting the atoms of the sputtering ion material into an ionized state, the ionized state being selected to have a distribution around a selected energy peak that has a high probability of sputtering the second material and a very low probability of sputtering the first material. The stimulating mechanism may comprise an RF or microwave induction mechanism.

REFERENCES:
patent: 2759106 (1956-08-01), Wolter
patent: 3150483 (1964-09-01), Mayfield et al.
patent: 3232046 (1966-02-01), Meyer
patent: 3279176 (1966-10-01), Boden
patent: 3746870 (1973-07-01), Demarest
patent: 3960473 (1976-06-01), Harris
patent: 3961197 (1976-06-01), Dawson
patent: 3969628 (1976-07-01), Roberts et al.
patent: 4042848 (1977-08-01), Lee
patent: 4088966 (1978-05-01), Samis
patent: 4143275 (1979-03-01), Mallozzi et al.
patent: 4162160 (1979-07-01), Witter
patent: 4203393 (1980-05-01), Giardini
patent: 4504964 (1985-03-01), Cartz et al.
patent: 4536884 (1985-08-01), Weiss et al.
patent: 4538291 (1985-08-01), Iwamatsu
patent: 4596030 (1986-06-01), Herziger et al.
patent: 4618971 (1986-10-01), Weiss et al.
patent: 4626193 (1986-12-01), Gann
patent: 4633492 (1986-12-01), Weiss et al.
patent: 4635282 (1987-01-01), Okada et al.
patent: 4751723 (1988-06-01), Gupta et al.
patent: 4752946 (1988-06-01), Gupta et al.
patent: 4837794 (1989-06-01), Riordan et al.
patent: 5023897 (1991-06-01), Neff et al.
patent: 5027076 (1991-06-01), Horsley et al.
patent: 5102776 (1992-04-01), Hammer et al.
patent: 5126638 (1992-06-01), Dethlefsen
patent: 5142166 (1992-08-01), Birx
patent: 5313481 (1994-05-01), Cook et al.
patent: 5319695 (1994-06-01), Itoh et al.
patent: 5411224 (1995-05-01), Dearman et al.
patent: 5448580 (1995-09-01), Birx et al.
patent: 5504795 (1996-04-01), McGeoch
patent: 5729562 (1998-03-01), Birx
patent: 5763930 (1998-06-01), Partlo
patent: 5866871 (1999-02-01), Birx
patent: 5936988 (1999-08-01), Partlo et al.
patent: 5963616 (1999-10-01), Silfvast et al.
patent: 6031241 (2000-02-01), Silfvast et al.
patent: 6039850 (2000-03-01), Schulz
patent: 6051841 (2000-04-01), Partlo
patent: 6064072 (2000-05-01), Partlo et al.
patent: 6172324 (2001-01-01), Birx
patent: 6195272 (2001-02-01), Pascente
patent: 6285743 (2001-09-01), Kondo et al.
patent: 6307913 (2001-10-01), Foster et al.
patent: 6377651 (2002-04-01), Richardson et al.
patent: 6396900 (2002-05-01), Barbee, Jr. et al.
patent: 6452199 (2002-09-01), Partlo et al.
patent: 6493423 (2002-12-01), Bisschops
patent: 6566667 (2003-05-01), Partlo et al.
patent: 6566668 (2003-05-01), Rauch et al.
patent: 6576912 (2003-06-01), Visser et al.
patent: 6586757 (2003-07-01), Melnychuk et al.
patent: 6972421 (2005-12-01), Melnychuk et al.
patent: 2001/0055364 (2001-12-01), Kandaka et al.
patent: 2002/0009176 (2002-01-01), Ameniya et al.
patent: 2002/0100882 (2002-08-01), Partlo et al.
patent: 2002/0141536 (2002-10-01), Richardson
patent: 2002/0163313 (2002-11-01), Ness et al.
patent: 2002/0168049 (2002-11-01), Schriever et al.
patent: 2003/0006383 (2003-01-01), Melynchuk et al.
patent: 2003/0068012 (2003-04-01), Ahmad et al.
patent: 2003/0219056 (2003-11-01), Yager et al.
Apruzese, J.P., “X-Ray Laser Research Using Z Pinches,”Am. Inst. of Phys.399-403, (1994).
Bollanti, et al., “Compact Three Electrodes Excimer Laser IANUS for a POPA Optical System,”SPIE Proc.(2206)144-153, (1994).
Bollanti, et al., “Ianus, the three-electrode excimer laser,”App. Phys. B(Laser&Optics) 66(4):401-406, (1998).
Braun, et al., “Multi-component EUV Multilayer Mirrors,”Proc. SPIE,5037:2-13, (2003).
Choi, et al., “A 1013A/s High Energy Density Micro Discharge Radiation Source,”B. Radiation Characteristics,p. 287-290.
Choi, et al., “Fast pulsed hollow cathode capillary discharge device,”Rev. of Sci. Instrum.69(9):3118-3122 (1998).
Feigl, et al., “Heat Resistance of EUV Muiltlayer Mirrors for Long-time Applications,”Microelectric Engineering,57-58:3-8, (2001).
Fomenkov, et al., “Characterization of a 13.5nm Source for EUV Lithography based on a Dense Plasma Focus and Lithium Emission.” Sematech Intl. Workshop on EUV Lithography (Oct. 1999).
Hansson, et al., “Xenon liquid jet laser-plasma source for EUV lithography,” Emerging Lithographic Technologies IV,Proc. Of SPIE,vol. 3997:729-732 (2000).
Kato, Yasuo, “Electrode Lifetimes in a Plasma Focus Soft X-Ray Source,”J. Appl. Phys.(33) Pt. 1, No. 8:4742-4744 (1991).
Kato, et al., “Plasma focus x-ray source for lithography,”Am. Vac. Sci. Tech. B.,6(1): 195-198 (1988).
Lebert, et al., “Soft x-ray emission of laser-produced plasmas using a low-debris cryogenic nitrogen target,”J. App. Phys.,84(6):3419-3421 (1998).
Lebert, et al., “A gas discharge based radiation source for EUV-lithography,” Intl. Conf. Micro and Nano-Engineering 98 (Sep. 22-24, 1998) Leuven, Belgium.
Lebert, et al., “Investigation of pinch plasmas with plasma parameters promising ASE,” Inst. Phys. Conf. Ser No. 125: Section 9, pp. 411-415 (1992) Schiersee, Germany.
Lebert, et al., “Comparison of laser produced and gas discharge based EUV sources for different applications,” Intl. Conf. Micro- and Nano-Engineering 98 (Sep. 22-24, 1998) Leuven, Belgium.
Lee, Ja H., “Production of dense plasmas in hypocyloidal pinch apparatus,”The Phys. Of Fluids,20(2):313-321 (1977).
Lewis, Ciaran L.S., “Status of Collision-Pumped X-ray Lasers,”Am Inst. Phys.pp. 9-16 (1994).
Malmqvist, et al., “Liquid-jet target for laser-plasma soft x-ray generation,”Am. Inst. Phys.67(12):4150-4153 1996).
Mather, et al., “Stability of the Dense Plasma Focus,”Phys. Of Fluids,12(11):2343-2347 (1969).
Mayo, et al., “A magnetized coaxial source facility for the generation of energetic plasma flows,”Sci. Technol.vol. 4:pp. 47-55 (1994).
Mayo, et al., “Initial Results on high enthalpy plasma generation in a magnetized coaxial source,”Fusion Techvol. 26:1221-1225 (1994).
Nilsen, et al., “Analysis of resonantly photopumped Na-Ne x-ray-laser scheme,”Am Phys. Soc.44(7):4591-4597 (1991).
Partlo, et al., “EUV (13.5nm) Light Generation Using a Dense Plasma Focus Device,”SPIE Proc. On Emerging Lithographic Technologies III,vol. 3676, 846-858 (Mar. 1999).
Porter, et al., “Demonstration of Population Inversion by Resonant Photopumping in a Neon Gas Cell Irradiated by a Sodium Z Pinch.” Phys. Rev. Let., 68(6):796-799, (Feb. 1992).
Price, Robert H., “X-Ray Microscopy using Grazing Incidence Reflection Optics,”Am. Inst. Phys., pp. 189-199, (1981).
Qi, et al., “Fluorescence in Mg IX emission at 48.340 Å from Mg pinch plasmas photopumped by Al XI line radiation at 48.338 Å.” The Am. Phys. Soc., 47(3):2253-2263 (Mar. 1993).
Scheuer, et al., “A Magnetically-Nozzled, Quasi-Steady, Multimegawatt, Coaxial Plasma Thruster,”IEEE Transactions on Plasma Science22(6) (Dec. 1994).
Schriever, et al., “Laser-produced lithium plasma as a narrow-band extended ultraviolet radiation source for photoelectron spectroscopy.” App. Optics. 37(7):1243-1248, (Mar. 1998).
Schriever, et al., “Narrowband laser produced extreme ultraviolet sources adapted to silicon/molybdenum multilayer optics,”J. of App. Phys.,83(9):4566-4571, (May 1998).
Silfvast, et al., “High-power plasma discharge source at 13.5 nm and 11.4 nm for EUV lithography,”SPIE,vol. 3676:272-275, (Mar. 1999).
Silfvast, et al., “L

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Collector for EUV light source does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Collector for EUV light source, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Collector for EUV light source will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3780127

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.