Collection, storage, transportation and sampling system and...

Surgery – Container for blood or body treating material – or means used... – Bag type

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S411000, C604S415000, C600S576000, C600S577000, C600S580000, C600S581000, C128SDIG008, C383S042000, C383S047000, C383S904000

Reexamination Certificate

active

06730071

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a collection, storage, transporting and sampling system for fluids and method of use thereof. More particularly, the present invention relates to a system and method for collecting, storing, transporting and sampling blood.
2. Description of the Related Art
A conventional blood collection bag assembly includes a bag pre-filled with an anticoagulant solution and a length of plastic tubing extending therefrom with a needle mounted to the end of the tubing remote from the bag. The bag is used to collect blood or donated blood for medical use.
Medical professionals will employ a “cut and drip technique” or a “stab” technique to collect a small sample of the donated blood for laboratory analysis to assure safety of the blood in the bag and to identify characteristics of the blood such as ABO group and the Rh type. These techniques allow the medical professional to collect a sample from the bag while maintaining the integrity and sterility of the bag and blood sample.
To perform the “cut and drip” technique with a blood bag, any packaging cover that had been mounted to the needle is removed, and the pointed distal end of the needle is inserted into a blood vessel of the patient or donor to generate a flow of blood through the tubing and into the bag. After a sufficient volume of blood has been collected, the tubing is clamped at two locations to prevent further flow of blood. The tubing then is cut or separated between the clamps. The removal of the clamp closest to the bag causes blood in the severed section of tubing to flow into the bag. The cut section of tube then is recapped, and the blood bag is stored and/or used. The clamp then is removed from the remaining section of tubing. Blood that had remained in the tubing between the clamp and the needle is enabled to flow into one or more blood collection tubes. The blood collection tubes then are sealed, labeled and shipped to a laboratory for analysis. The needle is removed from the patient and discarded along with the section of tubing connected thereto.
Blood collection bag assemblies that have the cut and drip technique have the presence of the needle on the end of the tubing remote from the blood collection bag which may create a risk to the donor, patient and medical professional. Additionally, the above-described assembly is in communication with the ambient environment for at least a short period of time. Hence, the potential exists for contamination of the interior of the blood collection bag, and such contamination can affect the safety and utility of the entire assembly. Similarly, the cut and drip technique requires the specimen collection tube to be in communication with the ambient environment as the open system is used to deposit a small sample of blood into the specimen collection tube for subsequent analysis. Furthermore, the blood sample collected for laboratory analysis may be mixed with the contents of the blood bag such as an anticoagulant, which may affect the test results. The technician performing such a blood collection process must perform a large number of steps in a specified order and often using a specific system of tools for clamping and cutting the flexible tubing and for subsequently collecting and then sealing the containers of blood.
In blood banking procedures, there are a number of tests that are conducted on the unit of blood to assure safety to the recipient of the unit of blood. Such tests include cross matching and type testing. To carry out these tests, while maintaining the closed system of the unit of blood, the blood bank technician breaks off a blood filled segment of tubing that is attached to the unit of blood. This technique is complex for the user.
Therefore, there exists a need to provide a collection assembly or kit that: (i) provides a simple and closed system in which interior portions of a blood collection bag are not exposed to ambient conditions; (ii) provides no chance for contamination of the blood collection bag or to the blood sample collected therein; (iii) avoids the complexities and costs associated with cut and drip techniques or valves and adapters; (iv) provides for collecting directly from the blood bag without use of segments; and (v) provides for various medical devices to be easily connected or linked with the present invention.
SUMMARY OF THE INVENTION
The present invention is to a blood collection assembly comprising a blood collection bag, flexible tubing extending from and communicating with the blood collection bag and a closed needle pierceable connector or interlock connector mounted to the end of the flexible tubing remote from the blood collection bag.
Desirably, the connector may include a substantially cylindrical cap that surrounds a portion of the flexible tubing that extends remotely from the blood collection bag. The cap may include an annular end wall extending over a portion of the flexible tube and having a central aperture aligned with the passage through the flexible tubing. A needle pierceable seal may be disposed between the annular end wall of the cap and the end of the flexible tubing. Additionally, the connector may include an inner fitting disposed within the flexible tubing to prevent the flexible tubing from collapsing out of engagement with the cylindrical sidewall of the cap. In addition, the connector may further include a locking mechanism that maintains the connection between the cap and other components. Other components that could be connected to the cap would have a mating connector that would be dimensioned to temporarily attach or lock to the cap.
The connector may be used with a needle holder that enables access to a blood vessel. The needle holder includes a widely open proximal end, a partly closed distal end and a generally cylindrical sidewall extending between the ends. The distal end may have an inwardly extending annular wall which defines a central opening with structure for engaging a needle assembly. For example, the opening in the annular distal end wall of the needle holder may include an array of internal threads. The needle assembly may include a double ended needle cannula having a pointed distal end for venipuncture and an opposed pointed proximal end. The needle assembly may further include a hub mounted to the needle cannula between the ends. The hub may be configured for engagement with the aperture in the annular distal end wall of the needle holder. The needle assembly may further include a multiple specimen sleeve mounted over the proximal end of the needle cannula. The cylindrical sidewall of the needle holder may define an inside diameter selected for slidably receiving a conventional evacuated blood specimen collection tube. Additionally, the cylindrical sidewall of the needle holder defines an inside diameter that is dimensioned to slidably receive the connector mounted to the end of the flexible tube remote from the blood collection bag.
The assembly of the present invention can be used by mounting the needle assembly to the needle holder such that the proximal end of the needle cannula extends into the needle holder. The distal end of the needle cannula may be placed in communication with a blood vessel of a patient in a conventional manner. Blood flow from the proximal end of the needle cannula is impeded by the multiple specimen collection sleeve mounted over the proximal end of the needle cannula and disposed within the needle holder. The blood collection process may continue by slidably inserting one or more evacuated blood specimen collection tubes into the open end of the needle holder such that the needle pierceable septum over the end of the evacuated blood specimen collection tube engages the multiple specimen sleeve of the needle cannula. Forces exerted by the evacuated blood specimen collection tube will cause the pointed proximal end of the needle cannula to pierce through the multiple specimen sleeve and subsequently to pierce through the rubber stopper or septum that sealingly covers the evacuat

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Collection, storage, transportation and sampling system and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Collection, storage, transportation and sampling system and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Collection, storage, transportation and sampling system and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3219820

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.