Collapsible metal tube and aerosol can and method for...

Stock material or miscellaneous articles – Hollow or container type article – Nonself-supporting tubular film or bag

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S035200, C428S035400, C428S035700, C428S035800, C428S035900, C428S036700, C428S036910, C428S461000, C428S462000, C428S516000, C428S517000, C428S521000, C428S523000, C220S666000

Reexamination Certificate

active

06479113

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a collapsible metal tube and aerosol can whose inside wall surface is covered with a highly reliable dense resin film that is virtually devoid of pinholes, excellent in elongation at break, and devoid of cracks or other defects caused by folding and other types of deformation; and to a method for manufacturing a collapsible metal tube.
DESCRIPTION OF THE RELATED ART
Collapsible metal tubes from which a paste stored therein is squeezed when the body portion is subject to plastic deformation by pressure have been used to store various foodstuffs, drugs, cosmetics, and the like.
A collaspsible metal tube comprises a body portion composed of metal walls susceptible of plastic deformation, and a shoulder portion and mouth
eck portion connected to one end of the body portion. The other end of the body portion of the collapsible metal tube is sealed by folding and tightening or the like, and the mouth
eck portion is openably closed with a cap.
In such collapsible metal tubes, the metal component of the body portion, or the outside air and moisture (water vapor) entering bit by bit over a long period of time through the fold formed at one end should be prevented from spoiling the contents, while the contents should be prevented from corroding the metal body portion. It has already been proposed in the past to use as such collapsible metal tubes so-called double-tube collapsible tubes, which is obtained by inserting a resin tube having an essentially complementary shape into a metal tube open at one end, packing the contents therein through the open end of the resin tube, and sealing the open end by applying pressure and heat through the metal tube to heat-seal. Problems with such a double-tube type of collapsible metal tube are that a large number of operations are required, it is difficult to align the outer metal tube or cylinder and the inner resin cylinder and to adjust the difference in the dimensional tolerance therebetween, and so forth. In addition, it leads to an inevitable increase in production costs to manufacture such tubes, and they can therefore be used in a very limited applications. Another disadvantage of such collapsible tubes is that it is difficult to remove the contents completely because the internally mounted resin tube tends to restore its original shape due to its thickness and elasticity.
It has also been proposed to use collapsible metal tubes in which a thermosetting resin coating material is sprayed on the inside wall surface of the body portion, and the resulting layer is heated and cured to obtain a thermosetting resin coating such as an epoxy phenolic resin film or a phenol butyral resin film. In such thermoplastic resin films, however, it is virtually impossible to prevent both the formation of pinholes and the formation of cracks by folding and other types of deformation.
That is, thermosetting resins are commonly rigid and are likely to be suffered from cracks or the like when subjected to folding or other types of deformation. This tendency to form cracks is even more pronounced when the film thickness is 15 &mgr;m or greater. An additional problem is that coating defects are formed by air bubbles and the like in thermosetting resin coatings during the formation of coatings, and pinholes tend to form in the resin films obtained by heating and curing such films. The pinhole formation becomes even more pronounced when an attempt is made to significantly reduce the thickness of a thermosetting resin film in order to prevent cracking. The pinhole formation can be reduced to some extent by reapplying the coating, but repeated application complicates the coating formation process, and when the number of application cycles is sufficient to achieve a complete elimination of pinholes, the total film thickness results in 20 &mgr;m or greater. It is therefore difficult to perform a sufficient number of application cycles in order to prevent the formation of coating defects while keeping the film thickness within a range to cause few cracks.
In other words, commonly used collapsible tubes with thermosetting resin coatings having a thickness of 5 to 15 &mgr;m are such that (1) it is difficult to prevent pinholes from forming in the resin films and that (2) when the thickness of a resin film is increased to 20 &mgr;m or greater in order to prevent pinhole formation, it is impossible to prevent cracks from being formed by folding or other types of deformation, with the result that the quality of the contents or metal body portions declines in both cases. The thermosetting resin coatings of conventional collapsible tubes still have a room for being improved in their ability to protect the contents or metal body portions.
In the collapsible metal tubes having thermosetting resin films on the inside wall surfaces of their body portions, it is necessary to coat the inside wall in the area of the open end with an end sealant such as a rubber latex in order to preserve the airtightness during the stage following the heating and curing for obtaining the thermosetting resin film and the subsequent introduction of the contents through the open end, that is, during the stage when the open end (cuff) is folded and tightened. The resulting disadvantage of such collapsible metal tubes is that the folding and tightening processes are too complicated to keep productivity.
Similar to collapsible metal tubes, aerosol cans serve as containers that have body portions consisting of metal walls. Normally, an aerosol can has a bottomed cylindrical body portion consisting of metal walls, a shoulder portion and neck portion connected to the upper end of the body portion, and a valve assembly provided to the neck portion. A drug or cosmetic that is stored in the aerosol can together with pressurized gas or another propellant is ejected outside through the valve assembly by the action of the valve assembly.
In such aerosol cans as well, the metal components of the body portion should be prevented from spoiling the contents while for the contents should be prevented from corroding the metal body portion. In the past, resin films consisting of epoxy phenolic resins, epoxy urea resins, vinyl organo-resins, fluororesins (polytetrafluoroethylene, polyperfluoroethylene, and the like), polyamides (nylon-12 and the like), polyesters (polyethylene terephthalate), polyethylenes and the like were formed on the inside surfaces of body portions and bottom portions.
Even in such resin films, however, coating defects formed due to the air bubbles and the like present in the films during the formation of coatings, and pinholes are apt to form in the resulting resin films. The pinhole formation can be reduced to some extent by repeatedly applying the coating, but repeated application is disadvantageous in that it complicates the coating formation process and lowers the productivity.
The present invention has been accomplished in order to overcome the aforementioned disadvantages associated with prior art. An object of the present invention is to provide a collapsible metal tube whose inside wall surface is coated with a highly reliable dense resin film that is virtually devoid of pinholes, excellent in elongation at break, devoid of cracks or other defects caused by folding and other types of deformation, and excellent in ability to protect the metal body portion and the contents; and to provide a method for manufacturing such a tube.
Another object of the present invention is to provide an aerosol can whose inside wall surface is coated with a dense resin film that is virtually devoid of pinholes and that has an excellent ability to protect the metal body portion and the contents.
Yet another object of the present invention is to provide an apparatus capable of performing a method for manufacturing the collapsible metal tube pertaining to the present invention.
DESCRIPTION OF THE INVENTION
The collapsible metal tube according to the present invention comprises:
a metal body portion plastically deformed without difficulty, said body portion being

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Collapsible metal tube and aerosol can and method for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Collapsible metal tube and aerosol can and method for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Collapsible metal tube and aerosol can and method for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2918583

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.