Cold beverage refill system

Dispensing – Automatic control – Delivery from source controlled by quantity in discharging...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C222S064000, C222S146600, C222S165000

Reexamination Certificate

active

06446835

ABSTRACT:

BACKGROUND
A variety of cold beverage dispensing systems have been designed to produce chilled beverages, such as frozen or slush beverages, chilled juice drinks, chilled alcoholic mixtures, milkshakes, etc. A typical cold beverage dispensing system may include a beverage hopper in the form of the tank or the like retaining a beverage in the form of a mixture of beverage concentrate and water, and a chilling structure for chilling the beverage to form a chilled beverage. The beverage concentrate may be in the form of a syrup or a powdered concentrate. Some form of blade or auger is provided which moves relative to the chilling portion to circulate the beverage along the chilling portion and within the beverage hopper. Circulation of the beverage along the chilling portion helps to reduce the temperature of the beverage.
Prior art cold beverage dispensing systems do not adequately address the difficulty of continuously dispensing quality chilled beverages. The degree of freezing and texture of a chilled beverage is important in providing a quality beverage. Similarly, the consistency of the freezing and texture is very important to customers in ordering drinks. Additionally, in the food service business, where efficiency is desirable if not necessary, it is important to be able to provide such beverages readily and continuously without having to encounter waiting time in waiting for the beverage to chill or freeze.
In the conventional refilling operation, for example, during each refill cycle, additional refill liquid is added to the beverage hopper when the supply of beverage within the beverage hopper has been reduced to a certain low level or depleted. Thus, each time a refill cycle is performed a relatively large volume of refill liquid needs to be chilled or frozen. This results in a long delay or waiting period before the next batch of chilled or frozen beverage is ready for dispensing or, alternatively, results in dispensing of an unsatisfactory beverage.
There are other shortcomings associated with prior art cold beverage dispensing systems. For example, conventional refilling operations are somewhat labor-intensive, inaccurate, and difficult to clean, increasing the operational costs of the cold drink system.
Additionally, because known prior art refilling systems are manual, such systems are susceptible to potential operator-related errors. For example, splashing of the beverage onto the system may occur during a refilling operation, leaving a sticky, residue on the machine. Moreover, an operator usually has to prepare the beverage by mixing an amount of beverage concentrate (e.g., syrup) with water. Thus, it is possible that beverage of an incorrect concentration may be prepared because of inaccurate measuring of the beverage concentrate and/or water. This, in turn, can adversely affect the taste of the beverage, result in inconsistent product quality, as well as affect the economic efficiency of the system, all of which are undesirable. Furthermore, the large quantities of beverage which must be lifted above and poured into the beverage hopper are heavy and unwieldy. Thus, the refilling operation can be difficult.
One prior art cold beverage dispensing system that is available which attempts to overcome some of the above-mentioned difficulties includes a refill tank coupled to the beverage hopper. The refill tank, which retains a quantity of premixed beverage or beverage mixture, is remote from the beverage hopper and is coupled to the beverage hopper by one or more hoses. When the supply of beverage or liquid in the beverage hopper has been depleted, the refill tank supplies the beverage hopper with additional beverage through the hoses. Such system, however, suffers from a number of deficiencies. In particular, the hoses do not drain effectively and, as a result, the liquid or beverage mixture stands in the hoses between refilling cycles. This can cause blockages in the hoses and possibly result in system shut-down. The beverage in the hoses contacts the entire surface area of the hoses and, therefore, may take on undesirable flavors, such as when the hose was previously used for a different flavor. As such, the flavor may be inconsistent and may adversely affect the taste of the chilled beverage.
Further drawbacks of such a prior art system are that the refill tank assembly requires considerable space, the system is awkward to set up, and is difficult to clean. Moreover, the system does not solve or avoid the problem of undue delay each time an additional batch of chilled beverage is prepared. Specifically, each time the beverage hopper is refilled, there still may be a considerable waiting period before the beverage is ready for dispensing, because of the time necessary to chill the beverage.
OBJECTS AND SUMMARY
Accordingly, it is a general object of the present invention to provide a cold beverage dispensing system, for chilling a liquid to produce a beverage having a frozen component, that includes an improved automatic refill assembly that desirably is effective and efficient.
A further object of the present invention is to provide such a cold beverage dispensing system having an automatic refill assembly and a beverage detector within a beverage hopper which enable the chilled beverage to be dispensed continuously without requiring a waiting time as servings of chilled beverage are dispensed.
A further object of the present invention is to provide such a cold beverage dispensing system that uses a powdered beverage concentrate and that includes a beverage refill concentrate hopper and a refill hopper detector for detecting either the presence or absence of beverage concentrate within the beverage refill concentrate hopper.
A still further object of the present invention is to provide a cold beverage dispensing system that includes a housing, a beverage hopper or tank, and a refill assembly that is secured to a housing and slides relative to the beverage hopper.
In accordance with these and other objects, the present invention provides a cold beverage dispensing system for chilling a beverage such that at least a portion of the beverage includes a frozen component. The system includes a beverage hopper or tank for retaining a quantity of beverage and a chilling assembly communicating with the beverage hopper for chilling the beverage. The system also includes a beverage detector having a conductive probe carried on and extending into the beverage hopper for detecting the condition of either the presence or absence of a beverage at a predetermined level in the beverage hopper and generating a refill control signal corresponding to the condition detected. A refill assembly communicates with the beverage hopper for controllably providing refill beverage to the beverage hopper. A controller is coupled to the refill assembly and the beverage detector for operating the refill assembly in response to the refill control signal to maintain the beverage in the beverage hopper at the predetermined level.
The refill assembly is adapted to produce the refill beverage by mixing with water a beverage concentrate, such as a powdered concentrate or syrup. In the preferred embodiment, the concentrate is a powdered concentrate and the refill assembly includes a beverage refill concentrate hopper for retaining a quantity of powdered concentrate and a mixing assembly including a water inlet and a mixing device. The mixing assembly communicates with the dispenser hopper for receiving a quantity of powdered concentrate therefrom and for mixing the quantity of powdered concentrate with a quantity of water dispensed from the water inlet which is mixed by the mixing device. The mixing assembly communicates with the beverage hopper for dispensing the mixture of water and powdered concentrate into the beverage hopper desirably in a thoroughly dissolved and mixed liquid form.
A cold beverage dispensing system in accordance with a preferred embodiment of the present invention provides many advantages. For example, because of the beverage detector, quality chilled beverages can be supplie

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cold beverage refill system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cold beverage refill system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cold beverage refill system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2896771

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.