Check-actuated control mechanisms – Including means to test validity of check – By testing material composition
Reexamination Certificate
1999-05-10
2001-11-06
Bartuska, F. J. (Department: 3652)
Check-actuated control mechanisms
Including means to test validity of check
By testing material composition
C324S601000
Reexamination Certificate
active
06311820
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to calibrating coin validators in order to permit each validator to be provided with accurate data concerning acceptable coins, that can be compared with coin data derived from coins to be validated, in order to determine coin acceptability.
BACKGROUND
Coin validators which discriminate between coins of different denominations are well known and one example is described in our GB-A-2 169 429. This coin validator includes a coin rundown path along which coins pass edgewise through a coin sensing station at which a series of inductive tests are performed on the coins with sensor coils in order to develop sensor signals which are indicative of the size and metallic content of the coin under test. The sensor signals are digitised so as to provide coin data, which are then compared with stored data by means of a microprocessor to determine the acceptability or otherwise of the coin under test. If the coin is found to be acceptable, the microprocessor operates an accept gate so that the coin is directed to an accept path. Otherwise, the accept gate remains inoperative and the coin is directed to a reject path.
The stored data are representative of acceptable values of the coin data. The stored data in theory could be represented by a single digital value but in practice, the coin parameter data varies from coin to coin, due to differences in the coins themselves and consequently, it is usual to store the data as window data corresponding to windows or ranges of acceptable values of the coin data.
The window data needs to vary from validator to validator due to minor manufacturing differences that occur between validators manufactured to the same design. Consequently, it is not possible to program a fixed set of window data into mass produced coin validators of the same design. A conventional solution to this problem is to calibrate the validators individually by passing a series of known true coins of a particular denomination through the validator so as to derive test data from which appropriate window data can be computed and stored in the memory of the validator. Reference is directed to GB-A-1 452 740. This calibration method is however, time consuming because a group of test coins for each denomination needs to be passed through the validator in order to derive data from which the windows can be computed.
Another calibration method is described in EP-A-0 072 189. In this method, first and second tokens in the form of metal discs are passed through the validator and subject to the same inductive tests as coins to be validated. The tokens are chosen to have different characteristics to the coins to be validated. During set up of the validator, the tokens are passed sequentially through the inductive sensing station and the resultant data are then compared with standard values from which calibration factors are calculated. A series of standard acceptable values of the coin data are provided and the calibration factors are applied to the standard data to derive suitable compensated values of acceptable coin data to be stored in the memory of the individual validator being calibrated.
A calibration tool is disclosed in U.S. Pat. No. 5,495,931, which is inserted into the coin rundown path. The tool includes a coil which is energisable to induce signals to the sensor coils which emulate a coin and can be used to calibrate the validator. Reference is also directed to EP-A-0 602 474 which discloses a calibration method that uses calibration discs, and a calibration algorithm in the form of a Taylor series.
These prior methods suffer a number of disadvantages. The use of calibration discs has the disadvantage that the calibration data derived from the inductive tests is produced in response to the disc rolling through the validator, which limits the accuracy that can be obtained. Furthermore, the standard values of true coins that are compensated according to the calibration factors, are not necessarily accurate. The actively energised calibration tool may not in practice provide consistent results due to differences in inductive coupling, from validator to validator.
The present invention seeks to overcome these problems.
SUMMARY OF THE INVENTION
According to the invention from a first aspect there is provided a method of calibrating a coin validator that includes a path for coins to be validated and at least one inductive sensor means for forming an inductive coupling with a coin as it passes along the path thereby to produce a sensor signal to be compared with coin data for determining authenticity of the coin, the sensor signal being of a value dependent upon characteristics of the validator, comprising inserting a calibration key different from coins to be validated in a static position in the validator such that eddy currents are induced in the key by operation of the sensor means, so as to produce a calibration value of the sensor signal as a function of the individual characteristics of the validator.
By using a calibration key in a static position in the validator, a much more accurate calibration value of the sensor signal may be obtained than with moving calibration token used hitherto.
The key may then be removed in order to allow the validator to be used for coin validation of coins under test.
The validator may include a coin rundown path disposed between the side walls which are movable relative to one another, for example to allow coins that have become jammed in the rundown path to be removed, and the method according to the invention may include the steps of moving the side walls apart, inserting the calibration key into the rundown path at a predetermined location, closing the side walls, and then forming the inductive coupling with the key in order to derive the calibration value of the coin signal.
The inductive sensor means may comprise a plurality of inductor coils so that respective inductive couplings are formed between the coils and the key. The shape of the key may be configured in order to optimise the respective inductive couplings. The coupling may be produced sequentially, for example by energising the coils sequentially so that the individual inductive couplings between the coils and the key can be monitored.
In another aspect, the invention provides a method of calibrating a coin validator that includes a path for coins to be validated and at least one inductive sensor means for forming an inductive coupling with a coin as it passes along the path thereby to produce a sensor signal to be compared with coin data for determining authenticity of the coin, the sensor signal being of a value dependent upon characteristics of the validator, comprising: inserting a calibration key different from coins to be validated in a static position in the validator such as to produce an inductive coupling with the sensor means, so as to produce a calibration value of the sensor signal as a function of the individual characteristics of the validator, comparing the calibration value of the sensor signal with ensemble data concerning corresponding calibration values of the sensor signal derived from an ensemble of coin validators of said design, and determining, as a function of the comparison, for said validator being calibrated, a value of the sensor signal corresponding to a particular coin denomination, that is compensated in respect of the individual characteristics of the validator.
Data concerning the compensated value of the sensor signal may be stored in the validator being calibrated, for example in a semiconductor memory. The compensated value may be stored as window data corresponding to a window of acceptable values of the coin signal in order to accommodate variations from coin to coin. Additionally, data concerning the calibration value of the sensor signal may be stored in the validator to allow subsequent reprogramming. The validator can then be reprogrammed to accept different denominations of coins, and this can be achieved by computing a compensated value of a sensor signal for a coin of a different denominati
Bell Malcolm Reginald Hallas
Hutton Les
Walker Robert Sydney
Wood Dennis
Bartuska F. J.
Coin Control Limited
Morgan & Finnegan , LLP
LandOfFree
Coin validator calibration does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Coin validator calibration, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Coin validator calibration will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2600479