Coil spring assembly machine

Wireworking – Article making or forming – Helix screwing through row of loops or openings

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C140S0030CA

Reexamination Certificate

active

06698459

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to the assembly of coil springs of the type used in bedding and upholstery and, more particularly, to an improved machine for fabricating coil spring assemblies.
BACKGROUND OF THE INVENTION
It is well known to fabricate a coil spring assembly from a plurality of coil springs organized in matrix-like fashion into columns and rows. Often the coil spring rows are interconnected in both the top and bottom planes of the assembly. The rows and columns of the matrix are held in spatial relation in the finished assembly by some type of fastener or tie, for example, a lacing wire, that interconnects adjacent springs throughout the matrix one with the other. The helical lacing wire extends from one edge to the opposite edge of the spring assembly between adjacent rows of that assembly. The lacing wire connects adjacent springs within adjacent rows simply by being wound around the juxtaposed lacing legs or end turns of the adjacent springs. After fabrication of the coil spring assembly, manufacture of a finished product is completed by placing a cushion or pad of material, e.g., woven or non-woven batting, foam rubber, or the like, over the top and/or bottom surface of the spring assembly matrix so formed, and then enclosing that structure with an upholstered fabric or cloth sheath or the like to provide a finished saleable product. One basic use of such coil spring assemblies is in the bedding industry where those assemblies find use as mattresses or box springs, but other uses are in the home finishing industry where the finished coil spring assembly may be used in a chair's seat or a chair's backrest or the like.
An automatic machine for assembling continuous coil spring rows is also known. Such a machine initially picks up a row of coil springs by inserting pickup blades within the spring's barrel and moving the spring through a 90° arc onto a support surface. The row of springs is then compressed against the support surface, and thereafter, the row of springs is pushed between upper and lower die boxes by upper and lower rotating transfer fingers. Assuming a row of coil springs had previously been loaded in the die boxes, upper and lower clamping dies are closed to secure lacing legs of respective top and bottom turns of the two rows of coils. A helical lacing wire is then wound around the clamped lacing legs of the two rows of coils to connect the two rows of coils together. After the two rows of coil spring rows are connected, upper and lower indexing hooks grab the connected coils and index them in a downstream direction so as to permit a next row of springs to be fed between the upper and lower die boxes and connected to the assembly. When a desired number of rows of springs have been connected, a feed-out mechanism is cycled to move the completed spring assembly away from the machine.
The known coil spring assembly machine has a feed conveyor for delivering coil springs to the pickup blades for each row of coils. The feed conveyor grips the coil at a location intermediate the coil ends and orients the coil horizontally so that the coil centerline is aligned with one of the pickup blades. The pickup blades are translated into the barrels of respective coils, and then, the pickup blades are pivoted 90° to a vertical position. The pivoting motion removes the coils from the feed conveyor and locates a row of coils on a support surface. While the above coil spring pickup mechanism works satisfactorily, it does have some disadvantages. First, as a pickup blade translates into a barrel of a coil, it passes across a path of the feed conveyor that moves in a direction perpendicular to the path of the pickup blade. Therefore, if, for any reason, the feed conveyor moves prior to the pickup blade initiating its pivoting motion, the feed conveyor would hit the pickup blade and potentially damage the pickup blade and supporting arm. Thus, there is a need for a device that receives a coil spring from a feed conveyor in a manner that does not cross the path of the feed conveyor.
The pickup blade has another disadvantage. Its length must accommodate the length of the coil as well as the length of the reciprocating stroke and the actuator that provides that stroke. Therefore, the pickup blade and supporting arm can be 24 inches or more in length. That substantial length not only increases the footprint of the machine and consumes valuable manufacturing space, but it also further separates a machine operator from a coil assembly portion of the machine. Therefore, if there is any problem or adjustment around the lacing machine in the coil assembly portion of the machine, the length of the pickup blade and supporting arm make it very difficult for the machine operator to reach in and service that area. Thus, there is a further need for a device that receives a coil spring from the feed conveyor and pivots the coil spring up to the support surface but is substantially smaller than known pickup blades.
Further, the known coil assembling machine has a pair of clamping dies for each coil location in the two rows of coil springs that are being laced together. Thus, there may be a dozen or more pairs of dies across a width of a platen that must be operated together. Each pair of dies is pivoted in a scissors style about a common pivot. The upstream or front dies of each pair of dies are opened or lowered, and the downstream or rear dies of each pair of dies are raised or closed as a coil is fed into the dies. Thereafter, the front dies are pivoted to a closed position to clamp the end turns of the coils in the two adjacent rows of coils between the two dies while the helical lacing wire is wrapped around lacing legs of respective coil springs. After the two rows of coils have been laced together, all of the dies are pivoted to an open position and the laced rows of coils are indexed forward without any interference between the rows of coils and the dies. The rear dies are then closed while the front dies remain open for reception of the next row of coils.
While the above die mechanism effectively secures the coil springs during the lacing process, it does have some disadvantages. The requirement of having the two dies in each pair of dies pivot up to a common plane places a significant demand on the die mechanisms. Thus, the die mechanisms must be constantly monitored and adjusted, if necessary, to maintain them in proper operating condition.
The above die mechanism has another disadvantage that relates to its pivoting motion. If any of the coil springs are not perfectly located, it may interfere with the rear die closing position. Thus, the rear die will strike the coil spring before it has finished its pivoting motion, and an upwardly angled force is applied against the end turn or loop of the coil spring. That force is reacted by the hood portion of the front die. After repeated applications of such an angled force, the hood of the front or rear dies often break. Thus, there is a need for a die mechanism that requires less maintenance and that repeatedly and reliably closes to its desired horizontal position, so that the creation of nonhorizontal forces is minimized.
The known coil assembly machine has a further disadvantage in not being able to automatically assemble coaxial coils. In many innerspring structures, it is desirable that some areas of the innerspring structure have a different stiffness or firmness than other areas. In one application, an increased firmness in a selected area is provided by utilizing a coil within a coil design in which a pair of coils, that is, an inner coil and an outer coil, are used to provide a coil unit having a greater stiffness. When one or more rows of such pairs of coils are laced together, they will provide an area of the innerspring structure that has an increased firmness. Thus, there is a need for a coil assembly machine that has the capability of handling and assembling rows of coils that have multiple coil springs in the row.
Consequently, there is a need for a coil spring assembly ma

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Coil spring assembly machine does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Coil spring assembly machine, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Coil spring assembly machine will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3200356

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.