Coherent population trapping-based method for generating a...

Coherent light generators – Particular beam control device – Optical output stabilization

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C372S026000, C372S031000, C372S069000, C372S098000, C372S108000

Reexamination Certificate

active

06363091

ABSTRACT:

RELATED DISCLOSURES
This disclosure is related to the following simultaneously-filed disclosures that are incorporated herein by reference:
Coherent Population Trapping-Based Frequency Standard Having a Reduced Magnitude of Total a.c. Stark Shift of inventors Miao Zhu and Leonard S. Cutler Ser. No. 09/587,717;
Detection Method and Detector for Generating a Detection Signal that Quantifies a Resonant Interaction Between a Quantum Absorber and Incident Electro-Magnetic Radiation of inventors Leonard S. Cutler and Miao Zhu Ser. No. 09/588,032; and
Coherent Population Trapping-Based Frequency Standard and Method for Generating a Frequency Standard Incorporating a Quantum Absorber that Generates the CPT State with High Efficiency of inventor Miao Zhu Ser. No. 09/587,719.
FIELD OF THE INVENTION
The invention relates to methods for generating high-precision frequency standards and, in particular, for generating frequency standards based on coherent population trapping (CPT).
BACKGROUND OF THE INVENTION
The proliferation of telecommunications based on optical fibers and other high-speed links that employ very high modulation frequencies has led to an increased demand for highly-precise and stable local frequency standards capable of operating outside the standards laboratory. Quartz crystals are the most commonly-used local frequency standard, but in many cases are not sufficiently stable to meet the stability requirements of modern, high-speed communications applications and other similar applications.
To achieve the stability currently required, a frequency standard requires a frequency reference that is substantially independent of external factors such as temperature and magnetic field strength. Also required is a way to couple the frequency reference to an electrical signal that serves as the electrical output of the frequency standard. Potential frequency references include transitions between quantum states in atoms, ions and molecules. However, many such transitions correspond to optical frequencies, which makes the transition difficult to couple to an electrical signal.
Transitions between the levels of certain ions and molecules and between the hyperfine levels of certain atoms have energies that correspond to microwave frequencies in the 1 GHz to 45 GHz range. Electrical signals in this frequency range can be generated, amplified, filtered, detected and otherwise processed using conventional semiconductor circuits.
An early example of a portable frequency standard based on an atomic is frequency reference is the model 5060A frequency standard introduced by the Hewlett-Packard Company in 1964. This frequency standard used a transition between two hyperfine levels of the cesium-133 atom as its frequency reference, and had a frequency accuracy of about two parts in 10
11
. Current versions of this frequency standard have an accuracy of about five parts in 10
13
and a stability of a few parts in 10
14
.
Less accurate but smaller frequency standards have been built that use a transition between the hyperfine states of a quantum absorber such as a rubidium-87 atom as their frequency reference. This type of frequency standard includes a cell filled with a vapor of rubidium-87 atoms and located in a microwave cavity. The rubidium atoms in the cell are illuminated with light from a rubidium lamp. The light generated by the lamp includes two spectral lines, one of which is filtered out by passing the light through an auxiliary cell filled with rubidium-85 atoms, so that light of essentially only a single frequency illuminates the rubidium atoms.
The rubidium-87 atom has a ground state, the S state, that is split into two groups of states by the hyperfine interaction between the magnetic moments of the electron and nucleus. Each group contains a number of sublevels. The two groups are separated by an energy corresponding to a frequency of about 6.8 GHz. At room temperature, all the sublevels in the groups are approximately equally populated. The first excited state, a P state, is also split by the hyperfine interaction but the splitting is much smaller and can be neglected for the purposes of this discussion. The P state is essentially unpopulated at room temperature. When the rubidium atoms are illuminated with the light from the rubidium lamp/filter cell combination, the light is absorbed since its frequency corresponds to the energy difference between the P state and one of the groups constituting the S state. The light absorption decreases the population of one of the groups constituting the S state and increases the population in the other. As the resulting population imbalance reaches equilibrium, absorption of the incident light decreases.
For convenience, the two groups into which the ground state S of the rubidium-87 atom is split by hyperfine interaction will from now on be called the ground states of the rubidium atom. Feeding microwave energy into the microwave cavity at a frequency of about 6.8 GHz, corresponding to the energy difference between the two ground states, tends to equalize the populations of the states. The change of population causes the absorption of the light transmitted through the cell to increase. This can be detected and the resulting detection signal used to control the microwave frequency to a frequency at which the absorption of the light transmitted through the cell is a maximum. When this condition is met, the microwave frequency corresponds to, and is determined by, the energy difference between the ground states. The microwave signal, or a signal derived from the microwave signal, is used as the frequency standard.
The energy difference between the two ground states is relatively insensitive to external influences such as electric field strength, magnetic field strength, temperature, etc., and corresponds to a frequency that can be handled relatively conveniently by electronic circuits. This makes the energy difference between the ground states a relatively ideal frequency reference for use in a frequency standard. However, in the type of frequency standard just described, interaction between the incident light and the rubidium atoms results in a.c. Stark shift. The a.c. Stark shift changes the energy difference between the ground states, and, hence changes the frequency of the microwave signal. Thus, the a.c. Stark shift reduces the accuracy of the frequency standard. Moreover, since the a.c. Stark shift depends, in part, on the intensity and frequency of the incident light, the a.c. Stark shift converts variations in the intensity and frequency of the incident light into variations in the frequency of the signal generated by the frequency standard. Thus, the a.c. Stark shift additionally reduces the stability of the frequency standard.
The type of frequency standard just described suffers from a number of additional disadvantages. For example, the microwave cavity in which the cell is located and the auxiliary filter cell make the frequency standard complex and expensive to manufacture.
More recently, frequency standards have been proposed that use as their frequency reference coherent population trapping (CPT) in the transition between the hyperfine states of a quantum absorber such as the rubidium-87 atom. The structure of the CPT-based frequency standard can be similar to that of the frequency standard just described, but the CPT-based frequency standard lacks an auxiliary cell and a rubidium lamp, and only needs a microwave cavity if coherent emission, described below, is detected. The cell is illuminated with incident light having two main frequency components in the near infra-red. The incident light can be generated using two phase-locked lasers or by modulating the frequency of a single laser. In the former case, the frequency difference between the main frequency components is determined by the frequency difference between the lasers. In the latter case, the frequency difference between the main frequency components is determined by the modulation frequency applied to the laser.
The frequency difference is controlled to match the fr

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Coherent population trapping-based method for generating a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Coherent population trapping-based method for generating a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Coherent population trapping-based method for generating a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2838696

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.