Coherency stack of seismic traces

Data processing: measuring – calibrating – or testing – Measurement system in a specific environment – Earth science

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06393365

ABSTRACT:

This invention relates generally to analysis and suppression of seismic noise, and more specifically to a computer program-implemented method and apparatus for automatically reducing noise in seismic trace stacking operations.
BACKGROUND OF THE INVENTION
For many years seismic exploration for oil and gas has involved the use of a source of seismic energy and its reception by an array of seismic detectors, which are referred to as geophones when used on land and as hydrophones when used offshore. On land the source of seismic energy can be a high explosive charge electrically detonated in a borehole located at a selected point on a terrain, or another energy source having capacity for delivering a series of impacts or mechanical vibrations to the earth's surface. The acoustic waves generated in the earth by these sources propagate downwardly, and are reflected from subterranean strata boundaries or other formation discontinuities and are transmitted back to the surface. Multiple reflections reach the surface of the earth at varying intervals of time, depending on the distance and the characteristics of the subsurface traversed. These multiple returning waves are detected by the geophones, which function to transduce such acoustic waves into representative continuous analog electrical signals depicting amplitude versus time, and the thus detected signals are referred to as data traces. Accordingly, each trace records more than one reflection event.
In use on land an array of geophones is laid out along a grid covering an area of interest to form a group of spaced apart observation stations within a desired locality to enable construction of three dimensional (3D) views of reflector positions over wide areas. The source, which is offset a desired distance from the geophones, injects acoustic signals into the earth, and the detected signals at each geophone in the array are recorded for later processing using digital computers where the analog data is generally quantized as digital sample points at regular intervals, e.g., a time sample every two or four milliseconds, such that each time sample point may be operated on individually. Accordingly, continuously recorded seismic field traces are reduced to two dimensional (2D) vertical cross sections or horizontal map views, or 3D volume views, all of which approximate subsurface structure. The geophone array is then moved along to a new position and the process is repeated to complete a seismic survey. Accordingly, a seismic survey is data gathered at the surface and presented as a data representation of a portion of the subsurface.
After exploration of an area is completed, data relating to energy detected at a plurality of geophones will have been recorded, where the geophones are located at varying distances from the shotpoint. The data is then reorganized to collect traces from data transmitted at various shotpoints and recorded at various geophone locations, and the traces are grouped such that the reflections can be assumed to have been reflected from a particular point within the earth, e.g., a common depth point (CDP) or a common midpoint. Often the group will include thirty or more traces reflected from the CDP. The individual records or “traces” are then corrected for the differing distance the seismic energy travels through the earth from the corresponding shotpoints, downwardly to the common depth point, and then upwardly to the various geophones. This step includes correction for the varying velocities through rock layers of different types and changes in the source and receiver depths. The correction for the varying spacing of shotpoint/geophone pairs is referred to as a normal move out (NMO), and after application of NMO each trace is the one that would have been produced by a coincident source and geophone. After this is done, the group of signals from the various common depth points are summed, and the resulting summed trace is referred to hereinafter as a “pilot” trace. Because the seismic signals are of a sinusoidal nature, this summation process serves to significantly reduce random noise in the seismic record, and thus increases its signal-to-noise ratio. This process is referred to as the “stacking” of CDP data, and is well known to those skilled in the art.
Another type of noise, which is referred to as coherent noise, is generated by the seismic source and travels mostly in the weathered layer. The strongest noise of this type is a noise train, which is called “ground-roll” by the geophysicists. Other sources of coherent noise, which often distort the field records and depth point gathers, include side-swipe or out-of-plane noise, and multiples (i.e., signals which have been reflected more than once). Noise reduction through the stacking process, however, is severely compromised in the event of certain circumstances including: presence of coherent noise since this noise is not random, and presence of low amplitude reflection signals. Presence of coherent noise in the seismic data can result in non-interpretable sections when the coherent noise masks underlying primary reflections.
Many types of noise filters and trace muting schemes have been developed to address the problem of coherent noise in seismic data. A significant problem with these known filters, however, is that user intervention is required to define a corridor or a specific time/trace position where the filter or mute pattern is to be applied.
Accordingly, it is an object of this invention to minimize user intervention in a scheme for filtering noise through a data processing sequence applied to NMO corrected CDP gathers.
Another object is to effectively eliminate noise in seismic data while minimizing any effects on the signal.
A more specific object of this invention is to optimize a stack of seismic traces utilizing a trace muting scheme that automatically tests all traces of a gather at each time sample, and mutes segments of traces having waveform shapes which are a minority compared to the entire gather.
Yet another object of this invention is to accentuate low amplitude reflectors.
SUMMARY OF THE INVENTION
According to the present invention, the foregoing and other objects and advantages are attained in a computer program-implemented method for attenuating noise through data processing steps which includes muting of noise containing signals and stacking of coherent-signal data traces. The method involves automatically comparing each trace in an NMO corrected CDP gather to a pilot trace resulting from a standard stack of the gather, so as to determine a numerical value representative of similarity of each NTMO corrected trace of the gather to the pilot trace. Subsequent steps, according to the invention, involve: muting of NMO corrected traces which lack sufficient similarity to the pilot trace, and restacking the remaining coherent-signal dominated traces to provide a noise filtered trace.
In a presently preferred embodiment of this invention, waveform comparison of the pilot trace with an NMO corrected trace of the CDP gather is made at each time sample, and over a user selected time period for a sliding window. This window is centered about the time sample point being compared, and is then sequentially incremented a number of times necessary to compare traces over a relatively long period (i.e. for the full time or depth of interest). Trace muting is applied to the time samples of the NMO corrected trace corresponding to the current time sample in the window, and then continues on a point by point basis as the sliding window is incremented along the traces being compared. After completing the muting scheme for a CDP gather, the remaining unmuted traces of the CDP gather, which are now dominated by coherent signal traces, are stacked to provide a coherency stack trace. This process is continued until all CDP gathers of the seismic survey have been processed, and thus to provide a coherency stack volume.
Also as presently preferred, the comparisons are made using an extended correlation algorithm that considers both shape and absolute

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Coherency stack of seismic traces does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Coherency stack of seismic traces, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Coherency stack of seismic traces will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2831585

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.