Coextrusion of multilayer film for container sleeve labels

Plastic and nonmetallic article shaping or treating: processes – With severing – removing material from preform mechanically,... – Forming continuous work followed by cutting

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C264S290200, C264S292000, C264S173160, C264S173190, C264S174100, C264S211120, C264S237000

Reexamination Certificate

active

06406653

ABSTRACT:

The present invention is directed to sleeve labels for beverage containers, and more particularly to a method and system for coextruding an improved nultilayer sheet for such sleeve labels.
BACKGROUND AND OBJECTS OF THE INVENTION
U.S. Pat. No. 5,322,664 assigned to the assignee hereof, discloses a method and apparatus for making a clear single-layer non-foam polystyrene film for use as a sleeve label. A blend of crystal polystyrene containing no mineral oil and a block copolymer is extruded through an annular orifice and then stretched over a cooling mandrel. The film is stretched in both the machine direction and cross direction. The film may be formed into sleeves with the machine stretch direction oriented circumferentially, and then shrunk onto beverage containers.
It is well known that polyolefins, such as polyethylene and polypropylene, have better toughness and strength characteristics than polystyrene. However, polystyrene offers attributes superior to polyolefins in terms of stiffness and machinability. Efforts to overcome some of the limitations in properties of polyolefins, polypropylene in particular, have been to produce films or sheets with high levels of orientation in both machine and cross directions (biaxial orientation). Such techniques require substantial equipment investment and high capacity requirements.
Polystyrene is an amorphous material with excellent stiffness, cutting and machining qualities. It can be blended or polymerized with butadiene or other rubber-type modifying materials to increase its toughness and strength characteristics. It can also be extruded with a much lower equipment investment than biaxial orientation equipment for polypropylene. However, even by using undesirable amounts of liquid plasticizers or very expensive copolymers, the load force necessary to make polystyrene stretch exceeds values for polypropylene and values required in some market applications. One example where stretch under a low force is desirable is with label stock for PET carbonated beverage containers. Carbonated beverages are bottled at low temperature, around 50° F. Labels are applied to the containers either before or after filling with the beverage. These labels are wrapped around the containers in the machine direction axis of the sheet, with the ends being overlapped and bonded by a hot melt adhesive. As the beverage in the bottle warms to room temperature, the pressure created by carbonization makes the container expand, exerting a circumferential force on the container label. For example, a two liter bottle with carbonated content at typical carbonation levels can increase in diameter sufficiently to increase the circumferential dimension of the container 0.10 inches or more. The hot melt adhesives used in the beverage labeling industry are formulated for ease of processing, and typically do not possess high sheer strength at room temperature. It is therefore necessary that the label be such as to stretch at a lower force load than the sheer strength of the adhesive in order to accommodate expansion of the container without fracture at the label seam. This force load is typically less than four pounds. Label stock of high impact polystyrene typically require in excess of four pounds to stretch the required 0.10 inches.
Polyolefins and polystyrene, normally incompatible, can be made compatible by use of a compatibility agent, such as a styrene-ethylene/butylene-styrene block copolymer. However, processing problems created by the nature of the blends of amorphous polystyrene and crystalline polypropylene have resisted commercial applications of this technology. With a significant amount of polypropylene (above 40%) combined with polystyrene, the blend has a low melt strength that creates problems in extruding a sheet, particularly one that has a low caliper and is commercially economically viable. The presence of the polypropylene also makes the extruded sheet sensitive to a condition known as scaling (similar to fish scales), which is an appearance blemish visible as a chevron pattern with variable opacity.
It is therefore an object of the present invention to provide a multilayer sheet and method of manufacture adapted for use as a label sleeve on containers that combine the desirable properties of polyolefins in terms of toughness and strength, and the desirable properties of polystyrene in terms of stiffness and machinability. Another object of the present invention is to provide a system and method for coextruding a sheet film of polyolefin and polystyrene composition that are economical to implement, and that provide sleeve labels having the desirable properties described above. A further object of the present invention is to provide a container for carbonated beverages having a sleeve label in accordance with the present invention secured thereto.
SUMMARY OF THE INVENTION
A multilayer sheet in accordance with a presently preferred embodiment of the invention, which is particularly well adapted for use as a label sleeve on carbonated beverage containers, includes first and second coextruded unfoamed layers of polymer composition consisting essentially of polyolefin, polystyrene and a compatibility agent. The polyolefin and polystyrene are in a weight ratio in the range of about 30/70 to 70/30, and the compatibility agent is in the amount of about 5% to 10% by total weight. A pigment in the amount of about 10% to 15% by total weight may be included in one or both of the coextruded layers. The polyolefin preferably is selected from the group consisting of polypropylene, propylene/ethylene copolymers, propylene/butylene copolymers, propylene/ethylene/butylene copolymers and mixtures thereof, and the compatibility agent preferably comprises a styrene-ethylene/butylene-styrene block copolymer or a styrene-butadiene-styrene block copolymer. One of the unfoamed layers preferably is thicker and of higher strength than the other layer, while the other layer has a smooth uniform exterior surface.
The coextruded multilayer sheet preferably is fabricated by directing polymer material from first and second extrusion devices to an extrusion die in such a way that the polymer materials from the first and second extrusion devices exit the die as respective coextruded first and second layers of a composite sheet. Strength and appearance properties of the coextruded sheet are obtained by controlling temperature of the polymer materials as they enter the extrusion die such that the polymer material from one extrusion device enters the die at a different temperature from that entering the extrusion die from the other extrusion device. In particular, the polymer material is cooled at one extrusion device so as to enter the die at a lower temperature than the material from the other extrusion device. This lower temperature greatly enhances the strength characteristics of the resulting sheet. To obtain desirable appearance qualities in the resulting sheet, the coextruded first and second layers are cooled at different rates downstream of the extrusion die. In particular, the layer of material that was cooled prior to extrusion through the die is further cooled downstream of the die at a slower rate than the other layer.
In the preferred embodiment of the invention, the sheet is extruded through an annular extrusion die from which the layers exit as a composite conical film. Cooling air is directed onto the outer layer as the composite film exits the die, while cooling air is directed onto the inner layer at a position spaced downstream from the die in the direction of extrusion through the die. This delayed cooling of the inner layer after extrusion has been found to eliminate scaling in the inner layer. The extrusion process of the present invention preferably also includes stretching the film axially and circumferentially by pulling the film over a mandrel having a diameter greater than that of the extrusion die while cooling the mandrel to extract heat from the film. The film is cut diametrically downstream of the cooling mandrel and wound into coils of sheet materia

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Coextrusion of multilayer film for container sleeve labels does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Coextrusion of multilayer film for container sleeve labels, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Coextrusion of multilayer film for container sleeve labels will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2944791

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.